bootstrap theme

A Deep Insight into Advanced Optimization

Here you can find the paper and the available public pages, files, and source code options for the work

An Efficient Chaotic Water Cycle Algorithm for Optimization Tasks

Neural Computing and Applications 28 (1), 57–85, 2017

Water cycle algorithm (WCA) is a new population-based meta-heuristic technique. It is originally inspired by idealized hydrological cycle observed in natural environment. The conventional WCA is capable to demonstrate a superior performance compared to other well-established techniques in solving constrained and also unconstrained problems. Similar to other meta-heuristics, premature convergence to local optima may still be happened in dealing with some specific optimization tasks. Similar to chaos in real water cycle behavior, this article incorporates chaotic patterns into stochastic processes of WCA to improve the performance of conventional algorithm and to mitigate its premature convergence problem. First, different chaotic signal functions along with various chaotic-enhanced WCA strategies (totally 39 meta-heuristics) are implemented, and the best signal is preferred as the most appropriate chaotic technique for modification of WCA. Second, the chaotic algorithm is employed to tackle various benchmark problems published in the specialized literature and also training of neural networks. The comparative statistical results of new technique vividly demonstrate that premature convergence problem is relieved significantly. Chaotic WCA with sinusoidal map and chaotic-enhanced operators not only can exploit high-quality solutions efficiently but can outperform WCA optimizer and other investigated algorithms.

Online access to Springer full-text PDF

Analysis and Source Codes of the Original Water Cycle Algorithm (WCA)

Water Cycle Algorithm (WCA) as a population-based optimization algorithm that tries to update the swarm concerning the top solutions (sea and rivers), and it has been utilized in many applications such as truss structures, unconstrained, constrained engineering design problems, and multi-objective (unconstrained, constrained) optimization problems.

Download MATLAB source codes of water cycle algorithm (WCA)

The WCA is an easy and straightforward optimizer, while it is a mediocre class method in terms of performance. The primary method is not published in top prestigious computer science journals. However, in 2012, it was one of the new methods for engineering problems.

The WCA cannot beat LSHADE, SADE, CODE, and other top DE variants, and other advanced PSO variants on most function optimization problems. The original paper suffers from a verification bias, and it never validated using IEEE CEC benchmarks such as IEEE CEC2011 and IEEE CEC 2010. No advanced optimizer on CEC has been considered in the original work to validate WCA. For the composition problems of IEEE CEC 2017, it faces serious stagnation problems and low convergence speed. It has a high rejection rate for top journals, and it is not the best choice as the base method of leading computer science research. This method has no chance for IEEE transactions journals to be applied as a core method.

Frequently asked questions

  • How to download codes of this paper?
    Press Contact me to copy my email address. Feel free to email me for any question or help I can do.
  • Can I download source codes of the basic optimization algorithm for academic projects?
    Yes, source codes of basic optimization algorithms is available for both non-profit and academic uses.
  • How to download PDF source this paper?
    Open the main content, find the Download PDF tab. Click on it to download. If you need more, please contact me from Contact me
  • Can you help us to continue this research?
    Yes, we can do great research together and I have all required material and team for collaboration and innovations. Press Contact me and it starts.
  • What is Code Editor or programming language?
    This code is written in MATLAB programming language and allows editing the code of algorithm in the app. Also, it's possible to get the codes in other available programming languages.
How to cite?

Heidari, Ali Asghar, Rahim Ali Abbaspour, and Ahmad Rezaee Jordehi. "An efficient chaotic water cycle algorithm for optimization tasks." Neural Computing and Applications 28, no. 1 (2017): 57-85.

Share this knowledge with others

"Look deep into nature, and then you will understand everything better." 
Albert Einstein