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Abstract: This study proposes an efficient metaheuristic algorithm called the Artemisinin Optimization (AO) algorithm. This 

algorithm draws inspiration from the process of  artemisinin medicine therapy for malaria, which involves the comprehensive 

eradication of  malarial parasites within the human body. AO comprises three optimization stages: a comprehensive eliminations 

phase simulating global exploration, a local clearance phase for local exploitation, and a post-consolidation phase to enhance the 

algorithm's ability to escape local optima. In the experimental, this paper conducts qualitative analysis experiments on the AO, 

explaining its characteristics in searching for the optimal solution. Subsequently, AO is then tested on the classical IEEE CEC 

2014, and the latest IEEE CEC 2022 benchmark function sets to assess its adaptability to various function types. Comparative 

analyses are conducted against eight well-established algorithms and eight high-performance improved algorithms. Statistical 

analyses of  convergence curves and qualitative metrics revealed AO's robust competitiveness. Lastly, the AO is incorporated into 

breast cancer pathology image segmentation applications. Using fifteen authentic medical images at six threshold levels, AO's 

segmentation performance is compared against eight distinguished algorithms. Experimental results demonstrated AO's 

superiority in terms of  image segmentation accuracy, Feature Similarity Index (FSIM), Peak Signal-to-Noise Ratio (PSNR), and 

Structural Similarity Index (SSIM) over the contrast algorithms. These comparative findings emphasize AO's efficacy and its 

potential in real-world optimization applications. The source codes of  this paper will be available in 

https://aliasgharheidari.com/AO.html and other public websites. 
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1.  Introduction 

 

The current industrial problems are more complex than before, involving many variables, which this fact force us to develop more 

efficient methods  [1]. These problems typically involve intricate scenarios with many decision variables, making it challenging to 
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identify the global optima swiftly. Due to multiple local optima and the high computational costs associated with these problems, 

finding a practical solution has become a significant challenge [2, 3]. Researchers have proposed various optimization methods to 

address this difficulty over the years. 

We can differentiate between optimization methods by categorizing them as either deterministic or non-deterministic. 

Deterministic methods typically rely on established rules, mathematical models, or iterative processes for optimization. Classic 

examples of  deterministic techniques include the Newton method [4] and gradient descent [5], which often employ deterministic 

rules or gradient information to compute parameters in the direction of  the optimal solution. However, deterministic methods 

may get trapped in local optima when dealing with complex problems, especially those involving multiple peaks. Non-deterministic 

methods introduce randomness or probabilistic search strategies during the search process, typically employed to address situations 

with complex search spaces, multiple local optima, or unclear problem structures. Optimization problems in the real world often 

exhibit intricate characteristics, challenging the efficacy of  deterministic approaches and thereby rendering stochastic methods, 

particularly metaheuristic algorithms, as viable solutions for tackling such problems. 

Metaheuristic Algorithms (MAs) constitute a classic category of  non-deterministic methods inspired by nature, biological 

populations, and human societies. They utilize various intelligent computational strategies to guide the search for solutions [6, 7]. 

Because MAs rely on stochastic search techniques to find optimal solutions [8], they reduce sensitivity to initial conditions, allowing 

a focus on input and output without overly concerning the problem's internal structure.  

The widespread acceptance of  metaheuristic algorithms is largely due to their simple conceptual structure, straightforward 

implementation, and effectiveness in complex, nonlinear settings. These methods typically initiate the optimization process with 

randomized initial solutions. Through iterative cycles guided by unique computational directives, candidate solutions are iteratively 

updated and refined. Eventually, the most optimal candidate solution emerges as the solution to the problem. The simplicity of  

MAs, derived from foundational theories and mathematically inspired by natural phenomena, renders them highly adaptable to 

real-world scenarios. They can be regarded as versatile "black boxes," capable of  producing specific outcomes for diverse inputs 

and problem sets. Researchers can tailor these algorithms to address various optimization challenges by adjusting their structural 

configurations and parameters [9, 10]. Moreover, the stochastic nature of  these algorithms enables them to explore the entirety of  

the search space, mitigating the risk of  being confined within local optima and facilitating the discovery of  ideal solutions. However, 

due to their problem-agnostic nature, solutions derived from MAs do not always guarantee global optimality. The stochastic nature 

of  their search processes often yields near-optimal rather than globally optimal solutions. The performance of  MAs exhibits 

substantial variability based on the processes involved in searching for and updating candidate solutions. As a result, researchers 

persistently work to create better solutions and tailor these algorithms to tackle optimization problems. Metaheuristic algorithms 

stand out in handling a wide range of  optimization issues by leveraging their flexibility and adaptability, including complexities, 

nonlinearities, and non-differentiability in numerical problems. Their successful applications transcend various domains, rendering 

them invaluable tools for researchers and practitioners [11]. 

Despite the significant roles that numerous algorithms play in addressing problems across various domains, limitations persist:  

(1) Achieving optimal performance in metaheuristic algorithms requires balancing exploration and exploitation. Each algorithm 

unavoidably encounters the issue of  exploring and utilizing the unknown space when searching for the best answer. Exploration 

involves extensive probing of  the search space to discover unknown regions, while exploitation focuses on finding the optimal 

solution within known regions. To attain the best results, algorithms must balance exploration and exploitation, preventing 

premature convergence and enhancing robustness [12].  

(2) No algorithm can address all optimization problems in best fashion, as per NFL theory [13]. Therefore, an ongoing imperative 

exists for the continual refinement of  novel optimization algorithms to surpass the constraints and exceed the capabilities of  

current algorithms. Numerous formidable optimization conundrums persistently emerge with the rapid evolution witnessed across 

various sectors. Current optimization methods might not adequately resolve these issues, necessitating the creation of  novel 

optimization technologies to tackle these challenges..  

(3) Although many researchers have been diligently striving to explore various avenues for enhancing and refining existing 

algorithms, aiming to overcome the limitations [14], these strategies encompass the implementation of  optimization modules, 

refining algorithmic structures, and harnessing parallel computing or distributed systems, among others. With the passage of  time 

and the continual advancement of  technology, these strategies may become increasingly intricate, potentially narrowing the scope 

for performance enhancements. Furthermore, at times, further improvements may encounter the issue of  diminishing returns, 

wherein the performance gains from each iteration gradually diminish, possibly failing to meet the anticipated standards. 



Developing new optimization algorithms can alleviate such stagnation and serve as an efficient source of  inspiration for enhancing 

existing algorithms. 

To address the aforementioned challenges, there is a drive to conduct research and development on new algorithms, aiming to 

strike a balance between algorithm specialization and adaptability [15]. The design and analysis of  new algorithms have been an 

active research topic [16]. By studying the wisdom of  predecessors through academic literature and interdisciplinary crossroads, 

drawing inspiration, and accumulating experience, we introduce an efficient metaheuristic algorithm in this paper named 

Artemisinin Optimization (AO). It is inspired by the curative process of  a medicine (artemisinin) against a disease (malaria), 

simulating the eradication of  malarial parasites in the human body. AO primarily comprises three processes: 

(1) Simulating the use of  a higher dose of  artemisinin in the early stages of  treatment to eliminate a large number of  malarial 

parasites in the human body, we propose a comprehensive elimination phase strategy for global exploration. This strategy uniquely 

follows pharmacokinetics, simulating the diffusion of  medicines in the human body. Flowing the algorithm's progression, it adjusts 

the search step size, smoothly transitioning into the local exploitation phase. 

(2) Simulating the gradual reduction of  drug dosage in the mid to late stages of  treatment to eliminate the remaining small number 

of  malarial parasites in the human body, this paper proposes a local clearance phase strategy. This strategy incentivizes the 

algorithm to perform precise solutions within known regions, thereby augmenting its local exploitation capabilities. 

(3) Considering the possibility of  malaria recurrence in the late stages of  treatment and introducing a post-consolidation strategy. 

This strategy furnishes the algorithm with mechanisms to counteract entrapment in local optima, thereby enhancing its ability to 

escape from the trap. 

In the experimental section, this paper conducts a comprehensive performance analysis of  the AO. Firstly, qualitative analysis 

experiments were designed to elucidate the algorithm's characteristics and adaptability. To verify its competitiveness among similar 

outstanding algorithms, AO is compared with eight widely acknowledged algorithms and eight high-performance improved 

algorithms on both the classic benchmark function set of  the IEEE CEC 2014 and the latest set of  the IEEE CEC 2022. 

Following these efforts, it was applied to a classic scenario in MAs: Multi-threshold Image Segmentation (MTIS) to validate AO's 

optimization performance in real-world applications. Real pathology images from breast cancer patients were segmented using 

AO. In the context of  image segmentation, due to the imbalance between exploration and exploitation, the likelihood of  the 

algorithm getting stuck in local minima increases with the number of  thresholds, reducing efficiency and segmentation accuracy. 

Combining AO with the MTIS techniques, optimal threshold sets were computed, reducing the complexity of  threshold set 

computation and improving segmentation accuracy. A comprehensive comparison is designed for the experimental results, 

evaluating AO's segmentation performance meticulously against 8 other MAs at 6 threshold levels. In summary, the contributions 

of  this paper are as follows: 

(1) Drawing inspiration from the curative properties of  artemisinin against malaria, an efficient Metaheuristic Algorithm is devised. 

This algorithm aims to establish a well-balanced exploration and exploitation paradigm akin to the dynamics observed in the 

treatment process of  artemisinin. This innovative approach introduces a fresh solution for addressing optimization problems. 

(2) In-depth study of  AO's exploration and exploitation capabilities is undertaken through a comprehensive set of  qualitative 

analysis experiments. These experiments aimed to unveil the fundamental reasons behind the performance of  this technology. 

(3) This paper conducted numerical optimization experiments to validate the performance of  AO. A comprehensive assessment 

was conducted on representative IEEE CEC 2014 and the latest IEEE CEC 2022 benchmark function sets, with thorough 

comparisons against eight well-established and highly improved algorithms. 

(4) Integration of  AO with MTIS technology enhanced the segmentation accuracy of  breast cancer images, leveraging the 

performance advantages of  the AO algorithm. The balance between exploration and exploitation in AO exhibited strong 

adaptability at different threshold levels. 

The subsequent sections of  this manuscript encompass the following segments: Section 2 delves into the process of  artemisinin's 

curative efficacy against malaria and elucidates inspirations derived from it. Section 3 introduces the design of  AO, explicating its 

conceptualization and implementation. Section 4 showcases experiments conducted to assess AO's performance, followed by a 

meticulous analysis of  the obtained results. Section 5 demonstrates AO's application in the context of  MTIS issues. Finally, Section 

6 summarizes the entirety of  the work undertaken in this paper, providing an overview of  prospective avenues and approaches 

for further research. 



2.  Literature review 

Metaheuristic Algorithms are specific strategies crafted to effectively tackle complex optimization dilemmas, especially in cases 

involving insufficient or flawed data, or restricted computational capabilities. They are advanced algorithms or heuristic procedures 

capable of  discovering, generating, adjusting, or selecting strategies to yield satisfactory solutions to optimization problems. In the 

research landscape of  MAs, based on theoretical backgrounds, they can be primarily categorized into four types: evolution-based, 

physical phenomena-based, swarm intelligence-based, and human societies-based algorithms.  

Algorithms based on biological evolution principles essentially implement the notion of  incremental optimization search by 

imitating the mechanisms that are inherent in the process of  biological evolution. Examples include genetic algorithm (GA) [17], 

genetic programming (GP) [18], differential evolution algorithm (DE) [19], biogeography-based optimizer (BBO) [20], evolution 

strategy (ES) [21], gradient evolution algorithm (GVA) [22], and others. These algorithms use crossover, mutation, and selection 

procedures to find global optimums, thus being appropriate for complicated domains and high-dimensional problems. 

In swarm intelligence-based algorithms, researchers focus on instincts observed in animal populations, such as the instinct to seek 

advantages and avoid harm, and such behaviors are beneficial for individual or collective survival. These algorithms iterate and 

update by simulating cooperation or information exchange among individuals in a population, aiming to search for global optima. 

Examples include particle swarm optimization (PSO) [23], artificial bee colony (ABC) [24], ant colony optimization (ACO) [25], 

grey wolf  optimizer (GWO) [26], and grasshopper optimization algorithm (GOA) [27], slime mould algorithm (SMA) [28, 29], 

colony predation algorithm (CPA) [30], Harris hawks optimization (HHO) [31], salp swarm algorithm(SSA) [32], bat algorithm 

(BA) [33], cat optimization algorithm (COA) [34], parrot optimizer (PO) [35], and hunger games search (HGS) [36].  

Physics-based algorithms involve researchers drawing inspiration from physical principles like inertia, electromagnetic forces, and 

gravity. Within these algorithms, search agents interact and navigate the search space based on these physical rules. Examples 

include gravitational search algorithm (GSA) [37], the earlier proposed black hole optimization (BHO) [38], the galaxy-based 

search algorithm (GbSA) [39], equilibrium optimizer (EO) [40], simulated annealing (SA) [41], multi-verse optimizer (MVO) [42], 

central force optimization (CFO) [43], RIME algorithm (RIME) [15], weighted mean of  vectors (INFO) [44], and Runge-kutta 

optimizer (RUN) [45]. 

The final category of  algorithms draws inspiration from the intricate dynamics of  human societies. These algorithms are designed 

to imitate various interactive behaviors and organizational activities observed in human societies, such as cooperation, competition, 

and information transmission, to address diverse problems. Examples include teaching–learning–based optimization (TLBO) [46], 

political optimizer (PO) [47], harmony search (HS) [48], exchange market algorithm (EMA) [49], social group optimization (SGO) [50], 

Jaya algorithm (JAYA) [51], and liver cancer algorithm (LCA) [52].  

Over the past two decades, MAs have captured significant attention from researchers. Firstly, they are relatively straightforward to 

implement and involve very basic concepts. Secondly, they outperform local search algorithms. Thirdly, they find wide-ranging 

applications across various domains, including economic emission [53, 54], feature selection [55, 56], scheduling difficulties [57-

59], bankruptcy prediction [60], medical diagnostics [61, 62], engineering design applications [63]. 

3.  Inspiration from the malaria treatment 

One of  the most dreaded illness is one caused by a species of  parasitic protozoa known to man as Malaria caused by the 

Plasmodium falciparum and others in the Plasmodium family. [64]. Malaria is now a global pandemic and is a major public health 

problem in tropical and subtropical areas of  the world such as Asia, Africa and Central and South America [65]. Among the many 

steps to control malaria epidemic, in the area of  malaria drug treatment, under the leadership of  Tu Youyou, in 2015 several 

Chinese scientists were able to make an important contribution in malaria treatment when they isolated and extracted a compound 

artemisinin from a plant artemisia annua. They purified and performed crystallographic analysis of  artemisinin. This is just the 

first time Artemisinin was extracted by Chinese in early 1970s. Artemisinin has exceptional abilities to quickly clear the parasite 

load from the patient's blood, rapidly reduce clinical manifestations of  malaria and give relief  to the malaria patient [64, 66]. 

 



Artemisinin medications travel throughout different parts of  the body and cells once they enter the human bloodstream. It's worth 

mentioning that red blood cells carry a significant amount of  ferrous ions (Fe2+), especially in those infected by malaria parasites 

[67]. The artemisinin molecule has certain active groups that react chemically when they come into contact with ferrous ions. This 

interaction harms the biological membrane of  the malaria parasite and internal biomolecules, leading to the disruption of  cellular 

membrane integrity and causing the membrane to rupture. At the same time, artemisinin messes with the internal biochemical 

workings of  the malaria parasite, messing up its ability to survive. When someone gets malaria, the journey from getting infected 

to finally finding relief  with artemisinin follows a certain path [65, 68, 69]: 

1. Infection: Malaria generally starts when the parasite is passed on by a mosquito's bite. After entering the bloodstream, the 

malaria parasite moves to liver cells, goes through various stages of  development, and then invades red blood cells. 

2. Malaria symptoms onset: After the malaria parasite enters red blood cells, there is a quick growth that results in the release of  

toxins and the start of  malaria symptoms in the infected person. These signs frequently consist of  elevated body temperature, 

shivering, head pain, and muscle soreness, indicating the start of  the illness presentation. 

3. Medical consultation and diagnosis: When individuals show symptoms of  malaria, they usually go to a doctor for diagnosis and 

treatment. Healthcare providers use blood tests to verify the existence of  malaria parasites in the blood. 

4. Initial treatment (Attack phase): Treatment begins with the initial phase of  attack, where medical professionals give artemisinin 

medications in higher amounts to promptly relieve malaria symptoms. 

5. Subsequent medication: Patients have regular appointments for blood tests to track the advancement of  the illness and guarantee 

successful therapy, ultimately lowering the chances of  a recurrence. 

6. Mid-to-Late treatment (Maintenance phase): After the initial phase of  treatment, patients move on to the maintenance phase, 

during which they receive reduced amounts of  artemisinin in order to ensure full elimination of  the malaria parasites. The length 

of  this stage changes based on the specific situations of  each patient and medical advice given. 

7. Complete recovery: Malaria is deemed completely healed once all malaria parasites have been eliminated from the patient’s 

system, and all symptoms have disappeared. This marks the end of  the malaria life cycle in the host, with no parasites left. 

 

 

 

 

Figure 1. Malarial parasites parasitize human body cells. 

 

 

The outlined process incorporates nuanced details: initially, upon invasion into the human body, parasites do not immediately 

trigger symptoms; rather, they infiltrate hepatocytes, undergoing continuous replication (the incubation period). Following a series 

of  lifecycle stages, a substantial population of  parasites enters the bloodstream, rampant infection of  red blood cells, further 

replication, and toxin release (the active period), as shown in Figure 1. Upon seeking medical attention and receiving a confirmed 

diagnosis of  malaria, patients commence artemisinin treatment. Prior to diagnosis, during the period of  parasitization until 



symptomatic manifestation, malaria parasites persistently replicate and invade additional red blood cells, potentially concealing 

themselves at any location within the intricate spatial confines of  the human body—a "complex space." Within this realm, each 

"unraveling" of  symptoms signifies an unfolding chapter in the intricate narrative of  the malaria parasite's presence. Given the 

dispersion of  malaria parasites throughout diverse bodily regions, the purpose of  employing artemisinin is to seek out and eliminate 

all malaria parasites, serving as a comprehensive strategy to address the complexity of  their concealment within the human body. 

 

Figure 2. Artemisinin cures malaria 

 

 

 

In Figure 2, in the initial treatment phase, higher doses of  artemisinin medicines are employed to control malaria symptoms and 

reduce the parasite count swiftly. A substantial amount of  the medication diffuses rapidly through the bloodstream, permeating 

the entire space (human body) to search for the ultimate solution (parasite). Subsequently, the treatment progresses gradually into 

the maintenance phase. During this stage, the medicine dosage is decreased, aiming to persist in clearing any remaining malaria 

parasites within the body until reaching the most concealed "solution." The ultimate objective is the complete eradication and cure 

of  malaria. Through an analysis of  the entire process and leveraging its intricate details, this study proposes the Artemisinin 

Optimization (AO). 

4.  The Artemisinin optimization algorithm 

Drawing upon the analysis presented earlier, three distinct strategies have been devised based on the various stages of  artemisinin 

treatment for malaria. The amalgamation of  these three strategies forms the foundation of  the AO. This section comprehensively 

explains the inspirations behind the design and the mathematical model. 

4.1  Initialization phase 

A patient introduces artemisinin medicines into the body through oral ingestion or injection. Drawing inspiration from this reality, 

this paper conceptualizes medicine microparticles as search agents for the algorithm, with the entire ensemble of  these search 

agents constituting the algorithm's solution set. Initially, the entire population, denoted as 𝐴, is initialized. As described by Eq. (1), 

the complete population comprises 𝑁 search agents, where 𝐷 signifies multiple-dimensional components within a search agent. 

This abstraction mirrors the decomposition and absorption of  drugs in the human body, dispersing through the bloodstream to 

various locations throughout the body. 



𝐴𝑁,𝐷 = 𝐵 + 𝑅 × (𝑇 − 𝐵) =

[
 
 
 
 
  𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝐷

  𝑎2,1 𝑎2,2 ⋯ 𝑎2,𝐷

⋮ ⋮ ⋱ ⋮
  𝑎𝑁,1 𝑎𝑁,2 ⋯ 𝑎𝑁,𝐷 ]

 
 
 
 

 (1) 

In the equation, 𝑇 and 𝐵 represent the boundaries of  the solution space, while 𝑅 denotes a set of  random number sequences, 

with values ranging between [0, 1]. AO employs a common approach found in metaheuristic algorithms by utilizing random 

number sequences to generate initial solutions. 

4.2 Comprehensive elimination phase 

During the initial phase of  malaria treatment, patients are administered larger doses of  medication to control the progression of  

the disease swiftly. Artemisinin, once absorbed, diffuses throughout the human body as blood is transported to various regions. 

The distribution of  the drug within the body is influenced by factors such as blood flow, vascular permeability, and the drug's 

binding affinity to proteins. Moreover, the intricate structure of  the human body poses a labyrinthine challenge for artemisinin 

medicines. Considering these considerations, this section introduces a unique search model to simulate the process of  drug 

diffusion, as depicted in Eq. (2): 

{
ai,j
t+1 = ai,j

t + c × ai,j
t × (−1)t, rand < 0.5

ai,j
t+1 = ai,j

t + c × bestj
t × (−1)t, rand > 0.5

 (2) 

In this strategy, search agents exhibit characteristics of  large-scale dispersion, serving as guides to explore the intricate solution 

space. Here, 𝑎𝑖,𝑗
𝑡+1 and 𝑎𝑖,𝑗

𝑡  respectively represent the search agent before and after the update, and best is the current optimal. 

Simultaneously, the diffusion of  artemisinin drugs in the human body adheres to the principles of  pharmacokinetics. This strategy 

considers the fact that drug concentration diminishes over time. In Eq. (2), 𝑐  represents the decay exponent of  drug 

concentration in the human body. The decay of  artemisinin drug concentration can be described using a one-compartment model, 

as follows: 

𝑑𝐶

𝑑𝑡
= −𝑘 × 𝐶 (3) 

𝐶(𝑡) = 𝐶0 × 𝑒(−𝑘×𝑡) (4) 

In Eq. (3), the variable 𝐶 represents the concentration of  the drug, and 𝑘 denotes the rate constant. Solving this differential 

equation yields Eq. (4): 𝐶(𝑡) signifies the drug concentration at time 𝑡 . Within this model, as time progresses, the drug 

concentration 𝐶(𝑡) undergoes exponential decay. Consequently, the exponent 𝑐 of  the artemisinin drug concentration can be 

calculated using Eq. (5):  

𝑐 = 1 × 𝑒
−(4×

𝑓
𝑀𝑎𝑥𝑓

)
 (5) 

In this strategy, assuming the initial drug concentration of  1 and the drug decay rate of  4, the algorithm's evaluation process is 

utilized to simulate the progression of  time in the model. Here, 𝑓 and 𝑀𝑎𝑥𝑓 represent the current and maximum evaluation 

iterations of  the algorithm. Acknowledging variations in the severity of  patients' conditions and differences in physiological factors, 

which lead to distinct dosages and durations of  medication, patients may spend varying durations in this phase. To encapsulate 

this inherent variability, a probabilistic coefficient 𝐾 is introduced, as depicted in Eq. (6): 

𝐾 = 1 −
𝑓1/6

𝑀𝑎𝑥𝑓1/6
 (6) 

In this equation, 𝐾 serves as a probabilistic coefficient, incorporating the algorithm's evaluation progress to simulate the objective 

scenario where patients exhibit diverse responses and durations during this stage based on individual conditions. This section 

provides a brief  simulation of  the motion process for each particle, as illustrated in Figure 3. Ultimately, the comprehensive 

elimination phase strategy can be expressed by Eq. (7): 

{
𝑎𝑖,𝑗

𝑡+1 = 𝑎𝑖,𝑗
𝑡 + 𝑐 × 𝑎𝑖,𝑗

𝑡 × (−1)𝑡, rand < 0.5

𝑎𝑖,𝑗
𝑡+1 = 𝑎𝑖,𝑗

𝑡 + 𝑐 × 𝑏𝑒𝑠𝑡𝑗
𝑡 × (−1)𝑡, 𝑟𝑎𝑛𝑑 > 0.5

, 𝑟1 < 𝐾 (7) 

where 𝑟1 is a random number with a range of  [0, 1]. Following the initial phase of  treatment, as the disease is under control, 

the treatment transitions into the maintenance phase to ensure the complete cure of  malaria. 



 
Figure 3. Comprehensive elimination phase of  particle motion. 

 

 

4.3Local clearance phase 

The objective of  the maintenance phase is to eliminate any remaining malaria parasites in the body, preventing their reproduction 

and the recurrence of  malaria symptoms. While early-stage treatment typically swiftly alleviates symptoms, a small number of  

malaria parasites may persist in the body, especially in cases of  severe infection. During this phase, patients continue to receive 

treatment with lower doses of  artemisinin and its derivatives to ensure the complete eradication of  malaria parasites, minimizing 

the risk of  adverse reactions in the human body. Inspired by this, the paper has designed a Local clearance phase strategy. In this 

strategy, the particle's movement process is depicted in Figure 4, calculated using Eq. (8) to determine the particle's position. 

𝑎𝑖
𝑡+1 = 𝑎𝑏3

𝑡 + 𝑑 × (𝑎𝑏1

𝑡 − 𝑎𝑏2

𝑡 ), 𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝐹𝑖𝑡𝑛𝑜𝑟𝑚(𝑖) (8) 

𝐹𝑖𝑡𝑛𝑜𝑟𝑚(𝑖) =
𝑓𝑖𝑡(𝑖) − min (𝑓𝑖𝑡)

max(𝑓𝑖𝑡) − min (𝑓𝑖𝑡)
 (9) 

𝑏1, 𝑏2, 𝑏3~𝑈(1,𝑁), 𝑏1 ≠ 𝑏2 ≠ 𝑏3 (10) 

 

                             
                            Figure 4. Local clearance phase of  particle motion. 

 

In this equation, 𝐹𝑖𝑡𝑛𝑜𝑟𝑚(𝑖)  represents the normalized fitness value, transforming the fitness values into a probability 



distribution to serve as relative weights among individuals. This ensures that individuals with higher fitness have a larger 

corresponding probability. This aids in retaining excellent individuals to a certain extent while providing lesser-performing 

individuals with a chance, adjusting the algorithm's focus on different individuals. The 𝑑 represents the coefficient, taking a 

random value between [0.1, 0.6]. This strategy simulates the process of  a small amount of  artemisinin clearing potential malaria 

parasites in the human body. The maintenance phase strategy allows the algorithm to exploit and exchange local information. In 

MAs, information exchange among individuals occurs during the iterative process. If  an algorithm's information exchange is 

thorough, its performance might be notably enhanced [24, 70]. 

4.4 Post-consolidation phase 

Indifference to the severity of  the illness and laxity during treatment represent perilous detrimental factors. Due to the 

improvement of  their condition, patients might gradually become less vigilant against malaria, reducing medication frequency, 

dosage, or even discontinuing treatment, potentially leading to a recurrence of  the disease. Despite having passed through the 

attack and maintenance phases, where most malaria parasites in the body have been eradicated, there remains a possibility that a 

small fraction of  parasites may gradually develop resistance to artemisinin. They may even enter a dormant phase, referred to as 

the "dormant form," significantly diminishing their biological activity and making it challenging for drugs to exert an effective 

killing effect. If  treatment is discontinued, malaria parasites, after passing through the dormant form, may cause a relapse of  the 

disease. Patients should strictly follow to the plan to have a chance to get ride of  malaria. 

This part presents the post-consolidation, recognizing the chance of  unexpected situations and simulating this particular 

circumstance. It is hypothesized in this strategy that inactive parasite forms remain in the human body. Unfortunately, some 

patients may suffer a reappearance of  malaria despite the continued presence of  these dormant parasites. The model for this 

strategy is expressed by Eq. (11): 

{
𝑎𝑖,𝑗

𝑡+1 = 𝑎𝑖,𝑗
𝑡 , 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.05

𝑎𝑖,𝑗
𝑡+1 = 𝑏𝑒𝑠𝑡𝑖,𝑗 , 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.2

 (11) 

                                

                              
                            Figure 5. Post-consolidation of  particle motion. 

 

In this equation, 𝑏𝑒𝑠𝑡𝑖,𝑗 represents a sub-vector of  the current best solution in the 𝑗th dimension. Eq. (11) representing malaria 

parasites that have not been eliminated due to entering the dormant phase. As depicted in Figure 5, this strategy enhances the 

ability of  search agents to escape from local optima. 

4.5 The proposed algorithm 

The entire process of  treating malaria patients with artemisinin inspires the introduction of  the AO. Through an examination of  



the treatment process for malaria and the integration of  metaheuristic algorithm principles, this paper analyzes different stages, 

drawing inspiration to propose distinct strategies of  the AO. These strategies include the comprehensive elimination phase strategy, 

encouraging the algorithm to perform global exploration; the local clearance phase strategy, promoting local exploitation, and the 

post-consolidation phase strategy, enhancing the algorithm's ability to escape local optima.  

Specifically, the inspiration behind AO and the algorithm's operational flow can be outlined as follows: Initially, drawing inspiration 

from the parasitic nature of  malaria parasites in the human body, the human body is metaphorically considered a 'space' with 

constraints. The invading malaria parasites are viewed as 'solutions' to be explored, and artemisinin drugs are regarded as search 

agents in the algorithm. Inspired by the process of  controlling the disease with higher doses of  medication in the initial stages of  

treatment, the comprehensive elimination phase strategy is introduced. Under this strategy, the AO gains global search capabilities, 

rapidly exploring the entire space and discovering potential regions of  optimal solutions. Drawing inspiration from the gradual 

control of  the disease in the later stages of  treatment and the reduction in medication dosage, the local clearance phase strategy 

is proposed. This strategy allows the algorithm to explore potential local optimal solutions. Lastly, anticipating the possibility of  

symptom recurrence due to the awakening of  dormant malaria parasites during treatment, the post-consolidation phase strategy 

is introduced, reinforcing the algorithm's ability to escape local optima. The pseudocode in Algorithm 1 provides a clearer 

understanding of  the AO's operational process. The flowchart in Figure 6 visually illustrates the structure of  the algorithm. 

Algorithm 1 Artemisinin Optimization pseudo-code 

/* Starting phase */ 

Parameters initializing: Fitness evaluation 𝑓 , Max fitness evaluation 𝑀𝑎𝑥𝐹 , Population size 𝑁 , 

Dimension 𝐷. 

Randomly initialize the agent population 𝐴𝑁,𝐷 and evaluate their fitness 𝑓𝑖𝑡𝑖, 

Find the current optimal 𝐴𝑏𝑒𝑠𝑡. 

𝑓 = 𝑓 + 𝑁. 

/* Main loop*/ 

While 𝑓 < 𝑀𝑎𝑥𝐹 

Calculate the probability 𝐾, exponent 𝑐. 

For each agent 𝑖 = 1 ∶  𝑁 

   For each dimension 𝑗 = 1 ∶  𝐷 

      /* Comprehensive elimination phase */ 

      If rand<𝐾 

         Update search agent 𝑎𝑖,𝑗 using Eq. (7). 

      End If 

      /* Local clearance phase */ 

      Update search agent 𝑎𝑖,𝑗 using Eq. (8) 

      /* Post-consolidation phase */ 

      Search agent information crossover by Eq. (11) 

   End For 

End For 

Calculate the fitness 𝑓𝑖𝑡. 

Update the population and find the optimal. 

          𝑓 = 𝑓 + 𝑁 

End While 

Return the optimal solution 

                        



                        
                                          Figure 6. Flowchart of  the AO 

The computation of  AO's algorithmic time complexity is contingent upon the maximum iteration count (𝑇), population size (𝑛), 

and problem dimensionality (𝑑𝑖𝑚). Simultaneously, AO's complexity primarily encompasses the comprehensive elimination phase, 

local clearance phase, post-consolidation phase, and fitness value evaluation. Firstly, the complexity of  generating the initial 

population is 𝑂(𝑛 ×  𝑑𝑖𝑚). Subsequently, due to the algorithm's straightforward design, the combined complexity of  the three 

strategies during the main stages is 𝑂(𝑛 ×  𝑑𝑖𝑚). Furthermore, the fitness value calculation then demands 𝑂(𝑛 × log𝑛) 

computation time. Consequently, the overall complexity of  AO is expressed as 𝑂(𝐴𝑂)  =  𝑂((𝑛 ×  𝑑𝑖𝑚) × log𝑛  ×  (𝑇 + 1)). 

5.  Experiment 

This section encompasses a comprehensive examination of  the performance of  AO. Initially, to delve into a nuanced 

understanding of  the optimization process of  AO, an experiment is established to scrutinize the advantages of  AO in optimal 

exploration and feature search. Subsequently, AO was compared with eight widely acknowledged algorithms and eight high-

performance improved algorithms to substantiate the superiority of  AO compared to peer algorithms. 

5.1  Experimental settings 

In AI-based research, precise experimental design and a fair testing environment are key prerequisites to ensure reliable research 

results [71, 72]. Thus, in this experiment, to ensure the fairness of  the trial, a set of  30 search agents was established in the initial 

population of  all participating algorithms, with each algorithm terminating after 300,000 evaluations. Additionally, each algorithm 

underwent 30 individual runs to mitigate the impact of  random conditions, preventing any single run from skewing the true 

performance understanding of  the algorithm. In this manner, fair testing not only aids in the accurate assessment of  algorithm 

performance but also significantly reduces the impact of  biases in the testing environment, thereby providing more reliable and 

consistent results [73, 74]. 

The datasets employed during testing encompass the classical IEEE CEC 2014 and the latest IEEE CEC 2022 benchmark function 

datasets. These two benchmark datasets are commonly used to test algorithm performance in the field of  evolutionary computing. 

Within the IEEE CEC 2014 benchmark functions presented in Table A.1, the efficacy of  these functions in assessing the 

convergence, diversity, and adaptability of  algorithms has been widely acknowledged. As depicted in Table A.2 for the IEEE CEC 

2022 benchmark functions, heightened demands are placed on the accuracy and stability of  algorithmic exploration, featuring 

improvements in comprehensiveness and diversity. This renders them more challenging and facilitates a more robust evaluation 

and comparison of  the performance of  different optimization algorithms. AO and its competitors will undergo comparative 

testing in both function sets, allowing for a thorough assessment of  their respective performances.  

During the evaluation and comparison of  results, the non-parametric significance test standard, the Wilcoxon Signed-Rank Test 



(WSRT) [75], was employed to score the performance of  each algorithm involved in the comparisons. As each algorithm produces 

a result for each function it runs on, WSRT compares and ranks the differences between the testing outcomes of  AO and the 

other algorithms. In WSRT, the null hypothesis posits no significant difference between two results, and the relationship between 

the p-value and 0.05 indicates the validity of  the hypothesis: when the p-value is less than 0.05, there is a significant difference 

between the two results; when the p-value is greater than or equal to 0.05, the two results are considered highly similar. Additionally, 

based on the significance of  the differences and the superiority or inferiority relationship between the two results, counting 

statistics are performed using the "+/-/=" symbols. Furthermore, the Friedman Test (FT) [76] was utilized to calculate the average 

results of  each algorithm across all benchmark functions, and rankings were assigned based on performance to present the 

comparative outcomes in a more intuitive manner visually. By using the WSRT and FT, it is possible to compare the performance 

of  different algorithms on benchmark functions and accurately detect significant differences between the results [54, 77, 78]. 

5.2 Optimization process and adaptive analysis 

Due to the limitations of  solely relying on model and theory exposition for a clear understanding of  the proposed method's search 

process, this section visually illustrates the process of  AO searching for the optimal solution within the solution space. This 

graphical representation offers a more intuitive insight into the algorithm's operational principles and internal mechanisms. 

In this section, a set of  experiments is conducted within the IEEE CEC 2014 to explore the iterative process of  the AO algorithm. 

The focus is on a particle within the set of  agents, and its trajectory is recorded. Initially, the historical trajectory is reflected by 

recording the position of  the particle after each iteration. Subsequently, attention is directed towards the updating process of  this 

agent, analyzing the trajectory and magnitude of  particle changes along the lateral dimension vector of  the agent. Finally, a 

comprehensive analysis of  the entire iteration process is conducted by examining the changes in fitness values. 

 
Figure 7. The 3D image of  benchmark functions and AO's solution distribution  



 
Figure 8. Qualitative analysis experiment of  AO 

In Figure 7, the first column presents the three-dimensional visualization of  benchmark functions used for testing, aiding in a 

better understanding and observation of  the distribution within the solution space. The second column displays the distribution 

of  historical search record points (depicted as black dots) of  AO's exploration for the optimal solution within the solution space 

on a two-dimensional plane. Upon observation, it is evident that AO's agents span almost the entire solution space, with the 

historical traces exhibiting a remarkably high coverage of  the solution set, demonstrating AO's robust global exploration 

capabilities. Moreover, agents are more densely clustered near the optimal solution (red dot), indicating a converging state and 

reflecting the continuous development towards the global optimum. 

In Figure 8, the (a) column displays the trajectory of  a single agent dimension within AO. In the graph, the trajectory of  this search 

agent exhibits significant variations in step size. This indicates that AO has a large global exploration range during the search 

process, resulting in higher efficiency in exploring. Additionally, in the later stages, the step size of  trajectory changes diminishes, 

eventually converging to a single point. This suggests that AO gradually transitions into local exploitation, ultimately pinpointing 



the optimal solution. Moreover, in some functions, the trajectory of  the search agent experiences sudden jumps in the later stages, 

indicating AO's strong capability to escape local optima and break free from them. 

The (b) column records the average fitness values calculated for all agents after iterations. Clearly, in multiple functions, the curves 

of  average fitness values exhibit a relatively smooth convergence trend. This indicates that the algorithm transitions from an initial 

phase of  global exploration, searching valuable regions with large step sizes, to gradually adjusting the balance between exploration 

and exploitation strategies, converging towards the optimal solution, and eventually converging to a single point. In AO, the fitness 

values of  each iteration align with the fluctuating trajectory, as the adopted search mode compels the agents to continuously update 

their positions and progressively explore until reaching the optimal solution, aligning with the design philosophy of  the algorithm. 

The (c) column presents the iterative convergence curves of  AO. Observing the algorithm's solving process is more intuitive for 

researchers, wherein the quality of  explored solutions improves with increasing iteration counts until optimal or near-optimal 

solutions are discovered upon iteration termination. Throughout the entire process, the algorithm is expected to explore more 

finely, avoiding being trapped in local optima. In the (c) column for all functions, AO adheres to the aforementioned description, 

demonstrating the ability to search for high-quality solutions, maintaining sensitivity to local optima, and quickly escaping from 

them. 

In summary, the design structure of  AO aligns with the fundamental principles of  metaheuristic algorithms. While ensuring 

convergence, AO adaptively adjusts the balance between exploration and exploitation during the updating process, dynamically 

tuning its strategy. Throughout the entire process of  seeking the optimal solution, AO effectively coordinates global exploration 

and local exploitation, achieving a continuous and uninterrupted transition from wide exploration to precise development. 

Therefore, the search for the optimal solution simultaneously encompasses breadth and depth through AO. 

5.3 Performance testing of  the AO 

4.3.1 Comparison with classical algorithms on IEEE CEC 2014 

In this section, AO will be compared with eight classical algorithms in IEEE CEC2014. Table 1 lists all the algorithms participating 

in the comparison along with their parameter settings. Table 2 presents the average (AVG) and standard deviation (STD) of  the 

results from 30 independent runs for each algorithm. 

Table 1. Algorithms involved in the comparison and their parameter settings. 

Algorithms Parameters 

Artemisinin Optimization (AO) ~ 

Particle swarm optimizer (PSO) [79] 𝑐1 = 2; 𝑐2 = 2; 𝑉𝑚𝑎𝑥 = 6 

Whale optimization algorithm (WOA)[80] 𝑎1 = [2,0]; 𝑎2 = [−2,−1]; 𝑏 = 1 

Moth-flame optimization algorithm (MFO)[81] 𝑏 = 1 

Harris Hawk optimizer (HHO)[82] 𝑘 = 0 

Ant colony optimization for continuous domains 

(ACOR)[25] 

𝑘 = 10; 𝑞 = 0.5;  𝑖𝑏𝑠𝑙𝑜 = 1 

Sine cosine algorithm (SCA)[83] 𝑎 = 2 

Gravitational search algorithm (GSA)[37] 𝑅𝑛𝑜𝑟𝑚 = 2 

Jaya optimization algorithm (JAYA) [51] ~ 

Table 2. Optimization results of  AO and classical algorithms for IEEE CEC 2014 

Fun F1  F2  F3  

Item AVG STD AVG STD AVG STD 

AO 7.99709E+06 6.92039E+06 2.60093E+06 6.85791E+05 7.02929E+03 3.90513E+03 

PSO 8.26818E+06 1.95658E+06 1.46964E+08 1.69877E+07 9.57164E+02 1.32723E+02 

WOA 2.83812E+07 1.04668E+07 3.16552E+06 3.25583E+06 4.23234E+04 2.83908E+04 

MFO 1.05739E+08 1.38512E+08 1.00454E+10 5.81789E+09 9.67456E+04 4.78512E+04 

ACOR 6.44089E+06 1.04824E+07 1.22805E+04 1.32849E+04 5.27685E+03 8.21866E+03 



HHO 9.30902E+06 5.55005E+06 1.18064E+07 2.15030E+06 5.32870E+03 1.58911E+03 

SCA 2.35040E+08 5.91279E+07 1.67936E+10 3.31377E+09 3.71267E+04 5.02912E+03 

GSA 1.53372E+06 4.05650E+05 1.95542E+07 2.44149E+06 7.61596E+03 3.19668E+03 

JAYA 6.10954E+07 2.36524E+07 5.32355E+09 1.18977E+09 3.27602E+04 7.23848E+03 

 F4  F5  F6  

 AVG STD AVG STD AVG STD 

AO 5.14249E+02 3.01810E+01 5.20177E+02 5.05473E-02 6.12940E+02 2.62929E+00 

PSO 4.58610E+02 3.12237E+01 5.20928E+02 5.64797E-02 6.23178E+02 3.81661E+00 

WOA 5.84690E+02 4.41531E+01 5.20334E+02 1.78785E-01 6.34612E+02 2.46253E+00 

MFO 1.49027E+03 9.33836E+02 5.20276E+02 1.35510E-01 6.23496E+02 3.37465E+00 

ACOR 4.73797E+02 3.76781E+01 5.20917E+02 5.79463E-02 6.10628E+02 2.83808E+00 

HHO 5.48903E+02 6.20437E+01 5.20221E+02 1.20727E-01 6.29634E+02 3.07476E+00 

SCA 1.33629E+03 1.87001E+02 5.20933E+02 5.57415E-02 6.33896E+02 1.87640E+00 

GSA 4.46058E+02 5.60596E+01 5.20954E+02 3.97913E-02 6.08438E+02 2.36904E+00 

JAYA 1.05960E+03 1.38458E+02 5.20928E+02 6.40442E-02 6.28242E+02 3.95363E+00 

 F7  F8  F9  

 AVG STD AVG STD AVG STD 

AO 7.00979E+02 5.17555E-02 8.00923E+02 4.33169E-01 9.95683E+02 2.63146E+01 

PSO 7.02289E+02 1.30136E-01 9.68094E+02 2.03982E+01 1.10998E+03 2.73688E+01 

WOA 7.01038E+02 5.56058E-02 9.90677E+02 3.99567E+01 1.14436E+03 7.18540E+01 

MFO 8.12609E+02 6.45877E+01 9.51973E+02 4.34687E+01 1.13397E+03 6.36668E+01 

ACOR 7.05778E+02 1.34350E+01 8.62425E+02 1.92466E+01 1.01056E+03 6.05590E+01 

HHO 7.01104E+02 2.23601E-02 9.03474E+02 1.51416E+01 1.09574E+03 1.61039E+01 

SCA 8.31409E+02 2.22640E+01 1.03932E+03 1.47577E+01 1.17770E+03 1.69511E+01 

GSA 7.01200E+02 2.55956E-02 8.39218E+02 7.51094E+00 9.63570E+02 1.13977E+01 

JAYA 7.10827E+02 2.14767E+00 1.00487E+03 1.74133E+01 1.13720E+03 1.79700E+01 

 F10  F11  F12  

 AVG STD AVG STD AVG STD 

AO 1.00695E+03 2.57079E+00 3.10757E+03 5.48111E+02 1.20021E+03 5.03229E-02 

PSO 5.14497E+03 5.88984E+02 5.75941E+03 5.17617E+02 1.20238E+03 2.98948E-01 

WOA 4.95500E+03 7.04835E+02 5.86401E+03 6.90030E+02 1.20174E+03 6.20402E-01 

MFO 4.11671E+03 8.45878E+02 5.43094E+03 7.98894E+02 1.20047E+03 2.69330E-01 

ACOR 2.98826E+03 4.53465E+02 5.37691E+03 2.29537E+03 1.20249E+03 2.74763E-01 

HHO 2.71700E+03 7.24657E+02 5.42636E+03 5.72512E+02 1.20145E+03 3.76520E-01 

SCA 6.80869E+03 4.97390E+02 8.09091E+03 3.83223E+02 1.20248E+03 3.42345E-01 

GSA 2.40165E+03 2.76616E+02 2.92782E+03 3.43008E+02 1.20092E+03 1.33478E-01 

JAYA 7.24897E+03 2.81699E+02 7.96492E+03 2.36547E+02 1.20248E+03 2.61738E-01 

 F13  F14  F15  

 AVG STD AVG STD AVG STD 

AO 1.30036E+03 6.75227E-02 1.40054E+03 2.47617E-01 1.50964E+03 2.93635E+00 

PSO 1.30041E+03 8.85931E-02 1.40028E+03 1.10043E-01 1.51628E+03 1.28118E+00 

WOA 1.30052E+03 1.35004E-01 1.40027E+03 4.96276E-02 1.58241E+03 2.81094E+01 

MFO 1.30236E+03 1.22607E+00 1.43270E+03 2.52106E+01 1.55025E+05 3.72008E+05 

ACOR 1.30045E+03 8.73998E-02 1.40078E+03 7.64683E-01 1.55852E+03 1.22253E+02 

HHO 1.30054E+03 1.18914E-01 1.40035E+03 2.08744E-01 1.54247E+03 1.28367E+01 

SCA 1.30289E+03 2.35860E-01 1.44483E+03 7.41809E+00 5.02501E+03 3.04461E+03 

GSA 1.30017E+03 2.17429E-02 1.40035E+03 5.51149E-02 1.51309E+03 7.71123E-01 

JAYA 1.30144E+03 3.36464E-01 1.40447E+03 3.58230E+00 1.53151E+03 6.21405E+00 

 F16  F17  F18  



 AVG STD AVG STD AVG STD 

AO 1.60996E+03 7.03525E-01 1.47459E+06 9.68065E+05 1.09495E+05 1.01731E+05 

PSO 1.61205E+03 4.88560E-01 2.37382E+05 1.03391E+05 2.24851E+06 5.94878E+05 

WOA 1.61274E+03 5.12457E-01 3.47644E+06 2.11978E+06 1.89877E+04 5.13832E+04 

MFO 1.61277E+03 4.15178E-01 2.45212E+06 2.60924E+06 1.32448E+07 7.18104E+07 

ACOR 1.61160E+03 4.03450E-01 1.59610E+05 5.07424E+05 4.83533E+03 5.02905E+03 

HHO 1.61231E+03 3.24876E-01 1.80064E+06 1.27003E+06 9.09466E+04 3.94859E+04 

SCA 1.61278E+03 3.21737E-01 5.96709E+06 2.78322E+06 1.40450E+08 8.19844E+07 

GSA 1.61291E+03 3.88192E-01 2.01483E+05 1.36700E+05 6.22279E+04 2.51066E+04 

JAYA 1.61273E+03 1.64278E-01 2.64135E+06 1.04138E+06 3.94425E+07 2.57424E+07 

 F19  F20  F21  

 AVG STD AVG STD AVG STD 

AO 1.91167E+03 1.48738E+01 1.67107E+04 1.12351E+04 7.81944E+05 6.05323E+05 

PSO 1.91675E+03 2.96413E+00 2.33050E+03 5.95216E+01 1.24030E+05 7.25773E+04 

WOA 1.95807E+03 3.88866E+01 2.69531E+04 1.93732E+04 1.18054E+06 1.22597E+06 

MFO 1.97062E+03 6.09155E+01 6.28054E+04 4.29065E+04 1.57727E+06 3.13455E+06 

ACOR 1.91738E+03 2.14346E+01 3.76033E+03 2.82457E+03 5.27612E+04 6.04385E+04 

HHO 1.93730E+03 3.86349E+01 1.25058E+04 5.53087E+03 5.41651E+05 4.24705E+05 

SCA 1.98985E+03 2.05959E+01 1.44013E+04 4.14717E+03 1.48096E+06 1.24473E+06 

GSA 1.90759E+03 1.07116E+00 3.69017E+04 1.37812E+04 1.31710E+05 7.91020E+04 

JAYA 1.92400E+03 2.75525E+00 4.44044E+03 1.17089E+03 7.17736E+05 2.56957E+05 

 F22  F23  F24  

 AVG STD AVG STD AVG STD 

AO 2.72458E+03 1.84246E+02 2.60394E+03 3.52382E+01 2.60000E+03 5.42123E-07 

PSO 2.90626E+03 2.45448E+02 2.61612E+03 6.46513E-01 2.62578E+03 6.11787E+00 

WOA 2.92926E+03 2.82432E+02 2.63138E+03 6.86226E+00 2.60511E+03 3.11785E+00 

MFO 3.00082E+03 2.94070E+02 2.68220E+03 4.93035E+01 2.68264E+03 3.22619E+01 

ACOR 2.53324E+03 1.71659E+02 2.61808E+03 6.73775E+00 2.64113E+03 6.18974E+00 

HHO 3.01707E+03 2.46384E+02 2.50000E+03 0.00000E+00 2.60000E+03 1.03246E-04 

SCA 2.92043E+03 1.26605E+02 2.66837E+03 1.39127E+01 2.60005E+03 2.52116E-02 

GSA 3.10809E+03 2.15988E+02 2.61295E+03 8.39919E+00 2.60822E+03 3.16446E-01 

JAYA 2.85582E+03 1.44191E+02 2.64109E+03 5.44557E+00 2.62063E+03 2.17500E+01 

 F25  F26  F27  

 AVG STD AVG STD AVG STD 

AO 2.70038E+03 1.49459E+00 2.78339E+03 3.77702E+01 3.28271E+03 1.58193E+02 

PSO 2.71221E+03 5.95572E+00 2.78711E+03 3.46055E+01 3.51737E+03 2.89525E+02 

WOA 2.71990E+03 1.77319E+01 2.70375E+03 1.81793E+01 3.67254E+03 3.97808E+02 

MFO 2.71476E+03 9.12640E+00 2.70267E+03 1.35215E+00 3.66387E+03 1.61780E+02 

ACOR 2.70692E+03 3.70827E+00 2.71378E+03 3.44782E+01 3.36055E+03 9.96760E+01 

HHO 2.70000E+03 0.00000E+00 2.76684E+03 4.76903E+01 2.90000E+03 0.00000E+00 

SCA 2.72541E+03 8.39690E+00 2.70234E+03 5.92319E-01 3.48113E+03 3.39625E+02 

GSA 2.70192E+03 1.00280E-01 2.77378E+03 4.29706E+01 3.33050E+03 4.09514E+02 

JAYA 2.71790E+03 3.33650E+00 2.70075E+03 1.11466E-01 3.54026E+03 2.16403E+02 

 F28  F29  F30  

 AVG STD AVG STD AVG STD 

AO 3.84680E+03 2.08016E+02 5.70378E+03 9.03506E+02 7.96402E+03 2.64258E+03 

PSO 7.21817E+03 8.08146E+02 5.79332E+04 1.50515E+05 1.48214E+04 6.32058E+03 

WOA 5.03384E+03 4.84656E+02 6.30365E+06 4.58108E+06 8.49916E+04 8.94530E+04 

MFO 3.85186E+03 7.34991E+01 4.18219E+06 4.28344E+06 4.44922E+04 3.01210E+04 



ACOR 3.80635E+03 1.30835E+02 2.84785E+05 1.53373E+06 1.01732E+04 1.05225E+04 

HHO 3.00000E+03 0.00000E+00 4.58001E+03 6.22657E+03 6.04157E+03 9.42801E+03 

SCA 4.92514E+03 4.03302E+02 9.98325E+06 5.00912E+06 2.34532E+05 9.79239E+04 

GSA 4.62512E+03 3.69531E+02 4.90476E+07 6.11502E+07 7.98314E+03 9.98483E+02 

JAYA 4.83206E+03 4.86233E+02 5.90456E+06 1.93160E+06 2.01364E+04 6.92944E+03 

Table 3. WSRT results and FT rankings for AO and classical algorithmic competitions. 

Algorithm Mean Rank +/-/= 

AO 2.70  1 ~ 

PSO 4.53  5 22/6/2 

WOA 6.03  6 25/3/2 

MFO 6.73  8 26/1/3 

ACOR 3.57  2 14/11/5 

HHO 3.70  3 15/6/9 

SCA 7.70  9 28/1/1 

GSA 3.83  4 15/9/6 

JAYA 6.20  7 27/2/1 

In Table 2, the average values of  AO are noticeably superior to algorithms such as ACOR, HHO, and GSA in most test functions. 

This suggests that AO is more likely to find better solutions over 30 independent runs. Additionally, AO exhibits relatively smaller 

variances in most functions, indicating lower performance fluctuations over multiple runs and demonstrating a higher level of  

stability. This implies that AO not only finds better optimal solutions among its competitors but also does so more consistently. 

Subsequently, in Table 3, the FT rankings for all participating algorithms are based on their overall performance across the 30 

functions. In the "Mean" column, representing the average ranking across all functions, AO has an average ranking of  2.70, 

indicating consistently high rankings across individual functions and ultimately securing the top position. Furthermore, the "+/-

/=" column metrics indicate that AO outperforms other competitors in multiple functionalities. Therefore, the comprehensive 

test results suggest that AO possesses superior search capabilities, primarily attributed to its unique exploration and exploitation 

capabilities, allowing it to search for optimal solutions more effectively. 

 

Figure 9. Convergence comparison of  AO and classical algorithms. 



Subsequently, in order to gain a more profound understanding of  the specific performance of  AO in its competition with 

alternative algorithms, we crafted curves illustrating the optimization processes of  the competitive counterparts based on 

numerical values derived from experimental data. Within Figure 9, the term "Best Value" signifies the peak fitness value explored 

by each algorithm throughout the iterative process, while "FEs" denotes the frequency of  fitness evaluations. Analysis of  the AO 

curve compared to its algorithmic counterparts reveals its predominant strength lies in its enduring exploitation capacity. In 

contrast to alternative algorithms, AO maintains a sustained convergence speed in subsequent iterations, circumventing the gradual 

reduction in convergence speed and the entrapment of  convergence accuracy observed in competing approaches. Even though 

certain algorithms achieve commendable convergence accuracy in the early stages, their true objective is to achieve a delicate 

balance between global and local optimization—exploring highly valuable regions in the initial stages but encountering challenges 

in unearthing optimality in subsequent exploration. This underscores the necessity of  focusing on local exploitation strategy [84]. 

In comparison, AO persistently seeks superior solutions by shifting its focus towards local exploitation, thereby continuously 

uncovering more optimal solutions. 

4.3.2 Comparison with high-performance algorithms on IEEE CEC 2014 

To further substantiate the optimization prowess of  AO and illustrate its exceptional attributes, this section juxtaposes AO against 

eight high-performance improved algorithms in IEEE CEC2014. Table 4 enumerates all the algorithms involved in the comparison, 

along with their corresponding parameter configurations. Table 5 presents the average (AVG) and standard deviation (STD) of  

the results obtained from 30 independent runs for each algorithm.  

Table 4. Algorithms and their parameter settings. 

Algorithms Parameters 

Artemisinin Optimization (AO) ~ 

Hybridizing grey wolf  optimization with differential evolution 

(HGWO) [85] 

𝛽𝑚𝑎𝑥 = 0.8, 𝛽𝑚𝑖𝑛 = 0.2, 

𝐶𝑅𝑝 = 0.2, 𝑎 = [0,2] 

JAYA algorithm with Levy flight (LJAYA) [86] ~ 

Improved grey wolf  optimization (IGWO)[87] 𝛽𝑛𝑢𝑚 = 10; 𝛺𝑛𝑢𝑚 = 15 

Cauchy and Gaussian Sine Cosine Optimization (CGSCA) [88] 𝑎 = 1, 𝛿 = 0.1 

Levy opposition-based learning Grey Wolf  

Optimizer(OBLGWO)[89] 

𝑃 = 0.5 

sine cosine algorithm with differential evolution (SCADE) [90] 
𝑎 = 2; 𝛽𝑚𝑎𝑥 = 0.8, 

𝛽𝑚𝑖𝑛 = 0.2; 𝐶𝑅𝑝 = 0.8 

modified sine cosine algorithm (MSCA) [91] 𝐽𝑅 = 0.1;  𝑎 = 2;  𝑆𝑅 = [0,1] 

Moth-flame optimizer with sine cosine mechanisms (SMFO) [92] 𝑏 = 1 

Table 5. Optimization results of  AO and high-performance algorithms 

Fun F1  F2  F3  

Item AVG STD AVG STD AVG STD 

AO 2.2735E+06 2.7564E+06 8.7034E+03 9.3286E+03 1.7698E+04 1.4736E+04 

HGWO 1.5631E+08 3.9308E+07 8.1099E+09 1.4621E+09 6.5228E+04 6.2117E+03 

LJAYA 9.7636E+07 2.5308E+07 6.4044E+09 7.3662E+08 3.9856E+04 6.6413E+03 

IGWO 1.6923E+07 5.3929E+06 2.7454E+06 1.6046E+06 6.0414E+03 2.2781E+03 

CGSCA 2.6533E+08 6.9017E+07 1.8448E+10 3.4788E+09 4.2247E+04 4.6400E+03 

OBLGWO 1.8830E+07 1.0227E+07 1.5871E+07 1.3858E+07 8.4835E+03 2.2330E+03 

SCADE 4.3699E+08 9.5082E+07 2.9385E+10 4.4358E+09 5.6480E+04 7.4875E+03 

MSCA 6.1133E+07 3.3856E+07 7.1080E+09 3.7914E+09 2.6210E+04 6.5155E+03 

SMFO 5.8300E+08 2.2955E+08 4.1069E+10 1.0117E+10 7.5168E+04 8.4295E+03 

 F4  F5  F6  

 AVG STD AVG STD AVG STD 

AO 4.7384E+02 4.9054E+01 5.2069E+02 1.0894E-01 6.0555E+02 1.9113E+00 



HGWO 9.1039E+02 6.1329E+01 5.2082E+02 1.2470E-01 6.2613E+02 1.9440E+00 

LJAYA 1.2630E+03 1.0150E+02 5.2094E+02 6.6589E-02 6.3232E+02 1.3859E+00 

IGWO 5.3001E+02 2.5933E+01 5.2053E+02 1.3073E-01 6.1905E+02 2.6114E+00 

CGSCA 1.7143E+03 2.1859E+02 5.2094E+02 3.5013E-02 6.3346E+02 1.7436E+00 

OBLGWO 5.5267E+02 4.3863E+01 5.2097E+02 4.4515E-02 6.2070E+02 4.0333E+00 

SCADE 2.3774E+03 5.8344E+02 5.2094E+02 5.4345E-02 6.3347E+02 2.6641E+00 

MSCA 7.8660E+02 1.4433E+02 5.2058E+02 1.4642E-01 6.2137E+02 2.7453E+00 

SMFO 7.0836E+03 1.9341E+03 5.2094E+02 6.0806E-02 6.3773E+02 2.3034E+00 

 F7  F8  F9  

 AVG STD AVG STD AVG STD 

AO 7.0002E+02 3.3382E-02 8.1043E+02 5.0586E+00 9.4760E+02 2.6749E+01 

HGWO 7.4366E+02 1.1500E+01 1.0078E+03 1.1355E+01 1.1427E+03 1.3603E+01 

LJAYA 7.1413E+02 2.0660E+00 1.0235E+03 1.2886E+01 1.1491E+03 1.5429E+01 

IGWO 7.0099E+02 4.9306E-02 8.8561E+02 1.4424E+01 1.0152E+03 1.8689E+01 

CGSCA 8.5592E+02 2.9572E+01 1.0553E+03 1.6230E+01 1.1804E+03 1.3502E+01 

OBLGWO 7.0116E+02 5.8833E-02 9.1562E+02 3.6524E+01 1.0662E+03 3.3605E+01 

SCADE 8.9609E+02 3.8698E+01 1.0735E+03 1.3949E+01 1.2050E+03 1.5663E+01 

MSCA 7.4613E+02 2.5595E+01 9.3749E+02 1.8571E+01 1.0499E+03 2.4796E+01 

SMFO 9.7422E+02 8.2084E+01 1.0882E+03 3.2693E+01 1.2102E+03 2.3822E+01 

 F10  F11  F12  

 AVG STD AVG STD AVG STD 

AO 1.2465E+03 1.4447E+02 3.1407E+03 1.2092E+03 1.2008E+03 2.8380E-01 

HGWO 5.5815E+03 2.7062E+02 6.7318E+03 4.6017E+02 1.2013E+03 3.0530E-01 

LJAYA 6.9339E+03 3.5092E+02 7.9182E+03 2.7295E+02 1.2025E+03 3.7038E-01 

IGWO 3.3967E+03 6.2858E+02 4.3281E+03 5.5233E+02 1.2007E+03 2.8461E-01 

CGSCA 6.8817E+03 4.6926E+02 8.1026E+03 3.4986E+02 1.2025E+03 3.4341E-01 

OBLGWO 3.9695E+03 6.8481E+02 5.1134E+03 9.4824E+02 1.2024E+03 6.2125E-01 

SCADE 7.3381E+03 3.3867E+02 8.2620E+03 3.1012E+02 1.2026E+03 2.9531E-01 

MSCA 4.0081E+03 4.9869E+02 4.7900E+03 6.6196E+02 1.2006E+03 3.2925E-01 

SMFO 7.3997E+03 7.2090E+02 8.1202E+03 7.0611E+02 1.2023E+03 5.8046E-01 

 F13  F14  F15  

 AVG STD AVG STD AVG STD 

AO 1.3003E+03 4.9251E-02 1.4003E+03 8.0028E-02 1.5117E+03 2.0982E+00 

HGWO 1.3019E+03 4.2079E-01 1.4227E+03 5.2177E+00 1.8070E+03 1.8776E+02 

LJAYA 1.3018E+03 3.9868E-01 1.4069E+03 2.8207E+00 1.5445E+03 1.6943E+01 

IGWO 1.3006E+03 1.3070E-01 1.4004E+03 2.7949E-01 1.5177E+03 5.7835E+00 

CGSCA 1.3032E+03 3.6341E-01 1.4525E+03 8.0849E+00 6.4554E+03 4.5498E+03 

OBLGWO 1.3005E+03 9.4262E-02 1.4004E+03 2.4180E-01 1.5171E+03 4.8967E+00 

SCADE 1.3039E+03 3.5443E-01 1.4864E+03 1.3165E+01 1.9053E+04 7.6873E+03 

MSCA 1.3008E+03 5.8246E-01 1.4141E+03 6.6638E+00 1.8289E+03 4.1414E+02 

SMFO 1.3058E+03 8.0789E-01 1.5440E+03 3.5117E+01 4.2152E+04 3.3857E+04 

 F16  F17  F18  

 AVG STD AVG STD AVG STD 

AO 1.6111E+03 6.1494E-01 1.0716E+06 7.0822E+05 4.2527E+03 3.0763E+03 

HGWO 1.6125E+03 2.5608E-01 5.6636E+06 2.6618E+06 1.1649E+08 4.4056E+07 

LJAYA 1.6127E+03 2.1208E-01 2.9382E+06 1.1159E+06 2.8431E+07 1.6396E+07 

IGWO 1.6117E+03 5.8564E-01 8.3159E+05 5.2089E+05 1.9637E+04 2.5555E+04 

CGSCA 1.6128E+03 2.1698E-01 7.2906E+06 3.4463E+06 1.8197E+08 1.1428E+08 

OBLGWO 1.6121E+03 5.4464E-01 1.6921E+06 1.3287E+06 3.8711E+04 3.0730E+04 



SCADE 1.6128E+03 1.8235E-01 1.3589E+07 6.4909E+06 1.7776E+08 1.0031E+08 

MSCA 1.6118E+03 6.2215E-01 1.6346E+06 1.4847E+06 3.3665E+07 5.6622E+07 

SMFO 1.6126E+03 3.5459E-01 4.0851E+07 3.9766E+07 1.0789E+09 9.4488E+08 

 F19  F20  F21  

 AVG STD AVG STD AVG STD 

AO 1.9122E+03 1.7752E+01 1.2341E+04 8.6995E+03 5.4930E+05 3.9953E+05 

HGWO 1.9920E+03 1.0699E+01 6.5077E+04 2.5176E+04 2.2187E+06 1.8770E+06 

LJAYA 1.9264E+03 2.6416E+00 7.6840E+03 2.1876E+03 7.0562E+05 2.3361E+05 

IGWO 1.9167E+03 1.1670E+01 2.9751E+03 8.6587E+02 2.2032E+05 1.7216E+05 

CGSCA 1.9904E+03 1.9249E+01 1.8394E+04 4.5279E+03 1.3880E+06 7.0538E+05 

OBLGWO 1.9146E+03 1.1087E+01 6.7346E+03 3.8890E+03 5.7622E+05 4.9633E+05 

SCADE 2.0148E+03 1.2664E+01 2.6851E+04 8.2172E+03 2.7484E+06 1.5405E+06 

MSCA 1.9515E+03 2.4508E+01 1.1344E+04 4.9956E+03 4.6457E+05 4.7066E+05 

SMFO 2.1563E+03 1.0380E+02 7.7902E+04 8.5775E+04 1.9043E+07 1.5747E+07 

 F22  F23  F24  

 AVG STD AVG STD AVG STD 

AO 2.6286E+03 2.0181E+02 2.6152E+03 3.5038E-04 2.6215E+03 7.3848E+00 

HGWO 2.9890E+03 1.5941E+02 2.5117E+03 4.4437E+01 2.6000E+03 0.0000E+00 

LJAYA 2.8335E+03 1.1530E+02 2.6483E+03 5.3356E+00 2.6569E+03 6.7347E+00 

IGWO 2.5438E+03 1.5823E+02 2.6210E+03 3.3631E+00 2.6000E+03 4.4471E-03 

CGSCA 3.0348E+03 1.5402E+02 2.5000E+03 0.0000E+00 2.6000E+03 1.2800E-05 

OBLGWO 2.6781E+03 1.8649E+02 2.6146E+03 2.1730E+01 2.6000E+03 0.0000E+00 

SCADE 3.1207E+03 1.4629E+02 2.5000E+03 0.0000E+00 2.6000E+03 1.4275E-06 

MSCA 2.5619E+03 1.5927E+02 2.6386E+03 9.4151E+00 2.6000E+03 6.5869E-04 

SMFO 3.4884E+03 7.3630E+02 2.5000E+03 0.0000E+00 2.6000E+03 1.1495E-05 

 F25  F26  F27  

 AVG STD AVG STD AVG STD 

AO 2.7068E+03 1.8865E+00 2.7436E+03 5.0360E+01 3.1721E+03 8.5824E+01 

HGWO 2.7000E+03 0.0000E+00 2.7342E+03 4.6421E+01 3.6451E+03 1.0478E+02 

LJAYA 2.7249E+03 3.9218E+00 2.7008E+03 1.3454E-01 3.3803E+03 2.1295E+02 

IGWO 2.7106E+03 2.4137E+00 2.7007E+03 1.4219E-01 3.1093E+03 3.8275E+00 

CGSCA 2.7000E+03 0.0000E+00 2.7029E+03 3.8590E-01 2.9000E+03 0.0000E+00 

OBLGWO 2.7000E+03 0.0000E+00 2.7006E+03 1.5249E-01 3.1235E+03 3.2250E+02 

SCADE 2.7000E+03 0.0000E+00 2.7038E+03 5.5310E-01 3.2862E+03 2.7641E+02 

MSCA 2.7139E+03 3.0029E+00 2.7008E+03 1.5483E-01 3.1629E+03 9.4494E+01 

SMFO 2.7000E+03 0.0000E+00 2.7422E+03 4.4769E+01 2.9000E+03 0.0000E+00 

 F28  F29  F30  

 AVG STD AVG STD AVG STD 

AO 3.7174E+03 8.0671E+01 4.2304E+03 4.4857E+02 6.0330E+03 9.3097E+02 

HGWO 4.3236E+03 2.8317E+02 4.5982E+06 2.9927E+06 4.3232E+04 1.0876E+05 

LJAYA 4.8536E+03 2.8360E+02 5.5222E+06 2.3912E+06 2.9883E+04 7.4050E+03 

IGWO 3.9000E+03 2.0882E+02 2.0495E+06 4.6534E+06 2.9535E+04 1.9622E+04 

CGSCA 3.0000E+03 0.0000E+00 3.1000E+03 0.0000E+00 1.0492E+04 3.9942E+04 

OBLGWO 3.7580E+03 5.1936E+02 4.2897E+06 4.3412E+06 2.2179E+04 1.2261E+04 

SCADE 5.2496E+03 6.4983E+02 1.6338E+07 8.0626E+06 4.6663E+05 1.5590E+05 

MSCA 3.8955E+03 1.3782E+02 6.5487E+05 1.0123E+06 5.1337E+04 3.6073E+04 

SMFO 3.0000E+03 0.0000E+00 1.5108E+06 8.2579E+06 1.0817E+06 8.7055E+05 

 

Table 6. WSRT results and FT rankings for AO and high-performance algorithms 



Algorithm Mean Rank +/-/= 

AO 2.60  1 ~ 

HGWO 5.57  5 26/3/1 

LJAYA 5.83  7 28/1/1 

IGWO 2.73  2 20/7/3 

CGSCA 5.60  6 23/6/1 

OBLGWO 3.37  3 19/5/6 

SCADE 7.30  9 25/3/2 

MSCA 4.27  4 21/3/6 

SMFO 7.20  8 24/5/1 

In the data presented in Table 5, AO exhibits a markedly superior average performance in most test functions compared to other 

algorithms such as IGWO, OBLGWO, and MSCA. This suggests that AO maintains an advantage even when competing against 

high-performing counterparts. Subsequently, in Table 6, the "Mean" column of  comprehensive rankings across all functions shows 

that AO achieves an average ranking of  2.60, consistently positioning itself  prominently in rankings for individual functions and 

ultimately securing the Rank 1. Additionally, the "+/-/=" column indicators also suggest that AO's results are superior across 

multiple functions, with noticeable distinctions. 

 

Figure 10. Convergence comparison of  AO and high-performance algorithms. 

Subsequently, to comprehend the specific performance of  the AO in competition with improved algorithms, curves illustrating 

the optimization processes were generated based on numerical values obtained from experiments, as depicted in Figure 10. A 

distinct advantage is evident in the convergence trends of  the curves, with AO displaying noteworthy superiority. Across single-

modal functions F1 and F2, multi-modal functions F6, F8, F10, F13, F16, hybrid function F18, and composite function F30, AO 

exhibits commendable convergence trends, effectively balancing global exploration and local exploitation to search for the optima. 

The comprehensive comparison results between AO, classical algorithms, and enhanced algorithms validate its performance in 

IEEE CEC 2014. 



4.3.3 Classical algorithms comparison on IEEE CEC 2022 

In the preceding sections, AO demonstrated outstanding performance in comparison with 16 algorithms on IEEE CEC 2014, 

showcasing its optimization capabilities through contrasts on classical test function sets. This section extends the experimentation 

by subjecting the algorithm to the latest IEEE CEC 2022 test suite. In contrast to its predecessor, IEEE CEC 2022 imposes higher 

demands on the accuracy and stability of  algorithmic exploration, with improvements in comprehensiveness and diversity, 

rendering it more challenging and better suited for evaluating and comparing the performance of  various optimization algorithms. 

Therefore, in this study, AO is once again compared with eight classical algorithms to examine its superiority in addressing new 

challenges in IEEE CEC2022. Table 7 enumerates the competitors involved in the comparison along with their parameter settings. 

In this experiment, unlike the previous section, the dimensionality of  the test functions is set to 20 (default dimension value) due 

to dimension constraints, and each algorithm is iterated for 200,000 iterations.  

Table 7. Algorithms involved in the comparison and their parameter settings. 

Algorithms Parameters 

Artemisinin Optimization (AO) ~ 

Particle swarm optimizer (PSO) [79] 𝑐1 = 2; 𝑐2 = 2; 𝑉𝑚𝑎𝑥 = 6 

Whale optimization algorithm (WOA)[80] 𝑎1 = [2,0]; 𝑎2 = [−2,−1]; 𝑏 = 1 

Moth-flame optimization algorithm (MFO)[81] 𝑏 = 1 

Ant colony optimization for continuous domains 

(ACOR)[25] 

𝑘 = 10; 𝑞 = 0.5;  𝑖𝑏𝑠𝑙𝑜 = 1 

Harris Hawk optimizer (HHO)[82] 𝑘 = 0 

Sine cosine algorithm (SCA)[83] 𝑎 = 2 

Multi-verse Optimizer (MVO)[42] 𝑊𝑚𝑎𝑥 = 1;𝑊𝑚𝑖𝑛 = 0.2 

Jaya optimization algorithm (JAYA) [51] ~ 

Table 8. Comparison results of  AO and peers in IEEE CEC 2022 

Fun F1  F2  F3  

Item AVG STD AVG STD AVG STD 

Demo 3.35895E+02 2.34986E+01 4.54938E+02 2.04887E+01 6.00454E+02 8.32234E-02 

PSO 3.75904E+02 1.34509E+01 4.41358E+02 2.79380E+01 6.35324E+02 1.38175E+01 

WOA 2.64691E+03 2.03047E+03 4.83878E+02 3.83323E+01 6.63441E+02 1.56195E+01 

MFO 2.45748E+04 1.91359E+04 5.40992E+02 1.32771E+02 6.19323E+02 9.28611E+00 

ACOR 2.28415E+03 6.34142E+03 4.40116E+02 1.75853E+01 6.01365E+02 2.28535E+00 

HHO 3.28924E+02 1.28679E+01 4.62901E+02 1.80404E+01 6.53861E+02 8.77329E+00 

SCA 8.01472E+03 1.64819E+03 6.33674E+02 5.93129E+01 6.36199E+02 4.80298E+00 

MVO 3.00020E+02 8.20511E-03 4.46508E+02 1.64725E+01 6.03205E+02 4.19923E+00 

JAYA 7.78702E+03 1.49836E+03 5.43470E+02 2.13640E+01 6.13102E+02 1.98380E+00 

 F4  F5  F6  

 AVG STD AVG STD AVG STD 

Demo 8.60835E+02 1.81085E+01 1.51606E+03 5.22949E+02 5.09879E+04 5.17886E+04 

PSO 8.94289E+02 1.93524E+01 1.47943E+03 8.19065E+02 1.21896E+06 3.91441E+05 

WOA 9.09113E+02 3.34675E+01 3.45927E+03 1.17681E+03 9.91695E+03 9.78604E+03 

MFO 9.10977E+02 3.14849E+01 3.26253E+03 1.10535E+03 3.99670E+06 9.62114E+06 

ACOR 8.90632E+02 2.81155E+01 9.71764E+02 1.35222E+02 6.67739E+03 5.99720E+03 

HHO 8.83179E+02 1.42429E+01 2.67900E+03 2.25799E+02 6.78555E+04 3.11794E+04 

SCA 9.30007E+02 1.03182E+01 1.88624E+03 2.78617E+02 6.67100E+07 3.74250E+07 

MVO 8.42313E+02 1.28857E+01 9.01313E+02 2.92690E+00 9.97905E+03 7.44928E+03 

JAYA 9.18638E+02 9.03111E+00 1.29292E+03 1.15428E+02 3.20276E+07 1.52615E+07 

 F7  F8  F9  

 AVG STD AVG STD AVG STD 



Demo 2.04921E+03 2.66350E+01 2.22224E+03 6.70457E-01 2.48158E+03 4.73910E-01 

PSO 2.11510E+03 3.47318E+01 2.28061E+03 7.01310E+01 2.46583E+03 1.09992E-01 

WOA 2.18126E+03 5.59483E+01 2.25546E+03 2.96415E+01 2.49540E+03 1.79462E+01 

MFO 2.10794E+03 4.35303E+01 2.23681E+03 1.11124E+01 2.50907E+03 3.66813E+01 

ACOR 2.05610E+03 3.79727E+01 2.23408E+03 2.58425E+01 2.48134E+03 3.05582E+00 

HHO 2.15210E+03 5.41456E+01 2.25130E+03 3.88309E+01 2.48561E+03 2.32419E+00 

SCA 2.11381E+03 1.63772E+01 2.24910E+03 8.55966E+00 2.55352E+03 1.89136E+01 

MVO 2.08007E+03 6.02453E+01 2.30200E+03 8.91089E+01 2.48083E+03 2.10838E-02 

JAYA 2.09963E+03 1.14643E+01 2.23586E+03 2.91979E+00 2.54210E+03 1.27361E+01 

 F10  F11  F12  

 AVG STD AVG STD AVG STD 

Demo 2.49361E+03 7.27645E+01 2.60411E+03 1.66499E+00 2.86553E+03 3.03125E+00 

PSO 4.35614E+03 1.17609E+03 2.79538E+03 1.95710E+02 2.85204E+03 1.12305E+01 

WOA 4.30201E+03 1.02543E+03 2.78997E+03 1.37550E+02 2.87520E+03 1.97660E+01 

MFO 4.04211E+03 1.17879E+03 2.80115E+03 1.61997E+02 2.86477E+03 2.01682E+00 

ACOR 3.42781E+03 6.53016E+02 2.76128E+03 1.78729E+02 2.86517E+03 2.07629E+00 

HHO 3.41059E+03 6.76626E+02 2.76332E+03 1.23253E+02 2.89419E+03 3.85740E+01 

SCA 2.52668E+03 3.98602E+01 2.76182E+03 8.24780E+00 2.86827E+03 1.24375E+00 

MVO 3.57518E+03 6.10863E+02 2.75676E+03 1.85078E+02 2.86059E+03 1.93399E+00 

JAYA 2.55059E+03 9.96284E+01 2.61675E+03 3.30387E+00 2.87242E+03 1.51187E+00 

Table 9. WSRT results and FT rankings for AO and competitors comparison at IEEE CEC 2022 

 Mean Rank +/-/= 

AO 2.67  1 ~ 

PSO 5.08  4 8/3/1 

WOA 6.92  9 11/1/0 

MFO 6.50  7 10/0/2 

ACOR 2.92  2 5/2/5 

HHO 5.67  6 9/0/3 

SCA 6.75  8 12/0/0 

MVO 3.08  3 6/6/0 

JAYA 5.42  5 11/0/1 

In Table 8, AO's performance in the latest test suite continues to exhibit outstanding exploration results, indicating its ability to 

adapt stably to more complex sets of  test functions. In Table 9, AO secures the top rank with a "Rank" value of  2.67. Furthermore, 

AO outperforms its peers in most functions in the "+/-/=" column. 

Figure 11 illustrates the exploration process of  AO and its competitors in discovering optimal solutions in the latest test suite. 

During the initial exploration phase, AO rapidly identifies potentially promising regions. As the exploration progresses, it 

transitions into local exploitation, precisely searching for the optimal solution, ultimately achieving the best convergence accuracy. 

These convergence plots depict AO striking a balance between exploration and exploitation. Thus, through comparisons on 

intricate functions, AO maintains a satisfactory level of  performance. 



 

Figure 11. Convergence comparison of  AO and competitors in the IEEE CEC 2022. 

4.3.4 High-performance algorithms comparison on IEEE CEC 2022 

In this section, AO is once again compared with eight high-performance enhanced algorithms on IEEE CEC 2022 to further 

evaluate its performance in the face of  complex challenges. Table 10 enumerates all the algorithms involved in the comparison 

along with their respective parameter configurations. Table 11 presents the average (AVG) and standard deviation (STD) of  the 

results obtained from 30 independent runs for each algorithm. 

Table 10. Algorithms involved in the comparison and their parameter settings. 

Algorithms Parameters 

Artemisinin Optimization (AO) ~ 

Hybridizing grey wolf  optimization with differential evolution 

(HGWO) [85] 

𝛽𝑚𝑎𝑥 = 0.8, 𝛽𝑚𝑖𝑛 = 0.2, 

𝐶𝑅𝑝 = 0.2, 𝑎 = [0,2] 

JAYA algorithm with Levy flight (LJAYA) [86] ~ 

Double adaptive random spare reinforced whale optimization 

algorithm (RDWOA) [93] 

𝑠 = 0; 𝑎1 = [2,0]; 

𝑎2 = [−2,−1]; 𝑏 = 1 

Cauchy and Gaussian Sine Cosine Optimization (CGSCA) [88] 𝑎 = 1, 𝛿 = 0.1 

Levy opposition-based learning Grey Wolf  

Optimizer(OBLGWO)[89] 

𝑃 = 0.5 

sine cosine algorithm with differential evolution (SCADE) [90] 
𝑎 = 2; 𝛽𝑚𝑎𝑥 = 0.8, 

𝛽𝑚𝑖𝑛 = 0.2; 𝐶𝑅𝑝 = 0.8 

modified sine cosine algorithm (MSCA) [91] 𝐽𝑅 = 0.1;  𝑎 = 2;  𝑆𝑅 = [0,1] 

Moth-flame optimizer with sine cosine mechanisms (SMFO) [92] 𝑏 = 1 

Table 11. Optimization results of  AO and high-performance algorithms. 

Fun F1  F2  F3  

Item AVG STD AVG STD AVG STD 

AO 3.0010E+02 4.5618E-01 4.5719E+02 1.5080E+01 6.0004E+02 2.0919E-01 

HGWO 2.7213E+04 6.1708E+03 5.6619E+02 2.8309E+01 6.2397E+02 4.9572E+00 

LJAYA 1.0908E+04 2.2880E+03 5.5633E+02 2.0311E+01 6.1730E+02 2.4186E+00 

RDWOA 1.0317E+03 1.1234E+03 4.6637E+02 2.3890E+01 6.0298E+02 2.3861E+00 

CGSCA 9.7005E+03 2.8040E+03 6.9791E+02 7.3253E+01 6.4160E+02 6.3308E+00 

OBLGWO 5.4112E+02 1.1984E+02 4.6063E+02 2.3726E+01 6.0680E+02 6.0381E+00 



SCADE 2.3704E+04 4.1954E+03 7.5201E+02 8.8059E+01 6.4422E+02 6.5507E+00 

MSCA 5.5828E+03 2.7795E+03 5.1459E+02 4.7343E+01 6.1402E+02 4.6127E+00 

SMFO 6.8954E+04 4.4745E+04 1.4510E+03 3.9801E+02 6.7012E+02 1.1311E+01 

 F4  F5  F6  

 AVG STD AVG STD AVG STD 

AO 8.7727E+02 2.0451E+01 9.0449E+02 8.1976E+00 5.7467E+03 4.8753E+03 

HGWO 9.1787E+02 1.0105E+01 1.3941E+03 1.2469E+02 3.4206E+07 1.2796E+07 

LJAYA 9.2406E+02 7.4571E+00 1.4717E+03 1.2492E+02 2.9290E+07 1.1739E+07 

RDWOA 9.1185E+02 3.2912E+01 2.3222E+03 4.3059E+02 8.9430E+03 7.2292E+03 

CGSCA 9.3317E+02 1.2050E+01 2.2012E+03 3.4257E+02 4.9413E+07 3.4530E+07 

OBLGWO 8.7941E+02 2.1529E+01 1.0755E+03 2.1167E+02 2.2698E+04 2.6773E+04 

SCADE 9.4916E+02 9.1818E+00 2.6403E+03 4.1515E+02 6.4803E+07 5.2445E+07 

MSCA 8.6909E+02 1.2912E+01 1.4140E+03 2.2834E+02 2.0122E+06 7.9045E+06 

SMFO 9.5035E+02 1.7299E+01 3.2545E+03 3.7080E+02 3.8535E+08 3.7737E+08 

 F7  F8  F9  

 AVG STD AVG STD AVG STD 

AO 2.0681E+03 4.5425E+01 2.2265E+03 2.1749E+01 2.4808E+03 3.9236E-02 

HGWO 2.1515E+03 1.8247E+01 2.2455E+03 8.0953E+00 2.5523E+03 2.4357E+01 

LJAYA 2.0976E+03 1.2254E+01 2.2376E+03 3.3126E+00 2.5358E+03 1.0050E+01 

RDWOA 2.0681E+03 3.5606E+01 2.2312E+03 3.0175E+01 2.4812E+03 1.0123E+00 

CGSCA 2.1247E+03 2.1103E+01 2.2546E+03 7.5544E+00 2.5625E+03 2.4384E+01 

OBLGWO 2.0753E+03 2.5814E+01 2.2383E+03 1.3350E+01 2.4818E+03 1.5688E+00 

SCADE 2.1569E+03 1.6579E+01 2.2459E+03 3.8859E+00 2.5700E+03 2.2185E+01 

MSCA 2.0553E+03 1.2950E+01 2.2297E+03 5.7078E+00 2.5012E+03 1.9056E+01 

SMFO 2.2043E+03 4.2043E+01 2.3017E+03 1.0492E+02 2.8322E+03 1.4833E+02 

 F10  F11  F12  

 AVG STD AVG STD AVG STD 

AO 2.5605E+03 9.0696E+01 2.7857E+03 1.5872E+02 2.8713E+03 6.5633E+00 

HGWO 2.6950E+03 4.5927E+02 2.8928E+03 1.7908E+02 2.8666E+03 5.1000E+00 

LJAYA 2.5052E+03 8.6732E+00 2.6162E+03 2.8583E+00 2.8721E+03 1.4631E+00 

RDWOA 2.6446E+03 1.4645E+02 2.7538E+03 1.7752E+02 2.8701E+03 9.6974E+00 

CGSCA 2.5250E+03 6.0857E+00 2.7649E+03 1.0066E+01 2.8677E+03 1.2553E+00 

OBLGWO 2.8447E+03 6.9650E+02 2.6512E+03 1.3010E+02 2.8638E+03 1.9705E+00 

SCADE 2.5526E+03 6.5746E+01 2.7661E+03 9.0700E+00 2.8692E+03 1.2176E+00 

MSCA 2.5644E+03 2.4073E+02 2.7162E+03 4.1428E+01 2.8633E+03 1.8446E+00 

SMFO 5.8375E+03 1.3331E+03 3.0481E+03 3.5398E+02 2.9497E+03 5.3229E+01 

Table 12. WSRT results and FT rankings for AO and high-performance competitors’ comparison at IEEE CEC 2022 

Algorithms Mean Rank +/-/= 

AO 2.50  1 ~ 

HGWO 5.92  6 11/1/0 

LJAYA 4.67  5 9/2/1 

RDWOA 3.67  4 8/0/4 

CGSCA 5.92  6 9/1/2 

OBLGWO 3.25  3 6/2/4 

SCADE 7.00  8 9/0/3 

MSCA 3.08  2 7/3/2 

SMFO 9.00  9 12/0/0 

In Table 11, AO continues to exhibit outstanding performance in the comparison with high-performance algorithms on IEEE 

CEC 2022, indicating its ability to adapt more stably to complex sets of  test functions compared to enhanced algorithms. In Table 



12, AO secures the top rank with a "Rank" value of  2.50. Additionally, AO outperforms its peers in most functions in the "+/-

/=" column. Figure 12 illustrates the exploration process of  AO and its competitors in discovering optimal solutions in the latest 

test suite. During the initial exploration phase, AO rapidly identifies potentially promising regions and accurately transitions into 

local development to search for the optimal solution precisely, achieving the best convergence. These convergence plots indicate 

that AO attains a balance between exploration and exploitation in line with its design philosophy. Thus, through further 

comparisons, it can be affirmed that AO is an algorithm capable of  better addressing new challenges. 

 

Figure 12. Convergence comparison of  AO and high-performance competitors on the IEEE CEC 2022. 

6.  Application of  the AO to multi-threshold image 

segmentation 

In this section, AO is placed in a real-world application scenario of  MAs: multi-threshold image segmentation (MTIS). Harnessing 

AO's optimization capabilities, it provides the MTIS system with an optimal combination of  thresholds conducive to the proficient 

segmentation of  images. 

MTIS technique segments images into different regions, each determined by one or more thresholds. Compared to traditional 

binary image segmentation techniques, MTIS excels in effectively handling images with multiple objects or exhibiting 

discontinuous color or brightness variations [94]. The fundamental concept involves comparing pixel intensity values in the image 

with a set of  thresholds, thereby allocating pixels to different regions. The simplicity and versatility of  this approach make it 

applicable to various types of  images. However, general threshold segmentation methods often struggle to utilize spatial positional 

information in the image effectively. 

In cases where objects occupy a relatively small portion of  the image, such methods may result in significant segmentation errors, 

rendering the results susceptible to noise interference. Abutaleba [102] introduced a MTIS method based on a two-dimensional 

histogram to address this issue. This method integrates the original grayscale histogram with pixel local averages histogram to 

obtain a two-dimensional histogram of  non-local means. Such integration substantially reduces the occurrence of  segmentation 

errors of  this nature, markedly enhancing segmentation quality. However, in this method, it is necessary to compute the 

corresponding two-dimensional entropy for each possible threshold and select the threshold that minimizes the entropy. This 

exhaustive approach introduces considerable computational complexity [95, 96]. 

While the two-dimensional histogram-based MTIS proves effective, it still faces limitations. This method necessitates extensive 

threshold optimization computations, potentially incurring significant computational costs. With the continuous evolution of  

complexity in digital images, there is an escalating demand for accurate and efficient image analysis. The deficiencies of  this 



approach, such as overlooking certain image details, gradually become apparent [97]. This paper introduces a MTIS method that 

integrates non-local mean filtering, two-dimensional histograms, Kapur entropy, and AO to address these challenges. The structure 

of  this section is as follows: Section 5.1 outlines the designed MTIS method. Section 5.2 presents tests of  the method at various 

threshold levels, incorporating comparisons with several analogous algorithms to assess the impact of  AO on this segmentation 

approach. 

6.1 Integrating the AO with MTIS system 

In the designed MTIS system, four key functional components have been incorporated: non-local mean filtering, two-dimensional 

histograms, Kapur's entropy, and the AO. Non-local mean filtering, as an image denoising technique, filters each pixel by 

considering the pixel values in the surrounding region, generating a non-local mean filtered image. This filtered image is then used 

to synthesize a two-dimensional histogram, enhancing the stability and accuracy of  subsequent segmentation steps. The two-

dimensional histogram serves as a chart to represent the relationship between two variables, aiding in the observation of  

relationships between different grayscale levels in the image and facilitating the partitioning process with multiple thresholds. 

Kapur's entropy is an indicator used to measure the information content of  an image, assisting in the selection of  optimal 

thresholds [98]. In the context of  MTIS, Kapur's entropy functions as the objective function and is optimized through the AO to 

determine the optimal combination of  multiple thresholds. To provide a clear understanding of  the operational flow of  MTIS, a 

flowchart is presented in Figure 13. 

 
Figure 13. The flowchat of  MTIS modeling 

Specifically, the steps of  this method are as follows: Initially, grayscale the input image to generate a grayscale image. Subsequently, 

non-local mean filtering is applied to the grayscale image to reduce noise, ensuring greater stability for subsequent processing. The 

grayscale and non-local mean filtered images are then used to construct a two-dimensional histogram. Employing Kapur's entropy 

as the evaluation metric, the entropy for each set of  thresholds is computed. The objective of  this method is to search for a 

threshold combination that maximizes Kapur's entropy, resulting in the segmented image's maximal entropy and information 

content. Following this, the AO is employed to optimize the computation of  the entropy. Finally, the image is segmented using 

the optimized set of  thresholds, gaining the completed segmented image. 



6.2 Segmentation experiments on breast cancer pathology images 

Cancer has been a serious disease in the last decade and there is an increasing momentum in medical research to detect it and help 

diagnosis of  cancer more efficiently [99]. Hence, in this study, 15 breast cancer pathology images were utilized as the target images 

for segmentation, all sourced from the Affiliated Hospital of  Wenzhou Medical University. Figure 14 illustrates the original images 

and their corresponding non-local mean two-dimensional histograms. The experimental objective is to evaluate whether the AO-

based MTIS system can consistently maintain excellent segmentation performance when faced with different images. Additionally, 

the study also aims to assess whether AO's ability to select optimal thresholds in the face of  diverse images meets the anticipated 

standards, as each image is treated as an independent problem associated with the segmentation threshold level [100]. 

 

Figure 14. Image samples and 2D histograms 

Furthermore, to thoroughly test AO, we engaged in a discussion on the selection of  threshold levels. The specific choice of  how 

many thresholds to use for segmenting medical images often depends on the medical application and image characteristics. In 

practice, this number is typically determined through experimentation and validation. There is no fixed standard number, as 

different images and applications may require varying numbers of  thresholds. This experiment references some general guidelines 

[95, 101, 102]: for simple applications like basic tumor detection, only one threshold may be needed to segment the image into 

background and foreground (tumor) categories. For more complex applications like tissue classification, where the image needs 

to be segmented into multiple tissue types, additional thresholds (usually between 3 and 6) can be chosen based on the image 

histogram or expert knowledge to delineate corresponding categories. For finer applications, such as distinguishing different types 

of  tissues (muscle, bone, vessels, etc.), more thresholds (between 6 and 10) may be necessary to segment various tissue types 

accurately. For more intricate tasks like cell and lesion analysis, even more thresholds (usually exceeding 10) may be required to 

precisely segment structures with different shapes and colors. 

Therefore, this study designed two sets of  segmentation experiments, including simple segmentation with 2, 4, and 6 threshold 

levels, and detailed segmentation with 16, 20, and 24 threshold levels. Eight algorithms were included in the segmentation task for 

comparison with the AO. All the algorithms involved in the comparison and their parameter settings are shown in Table 13. 

Table 13. Algorithms involved in the comparison and their parameter settings. 

Algorithms Parameters 

Artemisinin optimization (AO) ~ 

RIME algorithm (RIME) [15] 𝑊 = 5 



Differential evolution (DE) [103] 𝛽𝑚𝑎𝑥 = 0.8, 𝛽𝑚𝑖𝑛 = 0.2, 𝐶𝑅𝑝 = 0.2 

Harris Hawk optimizer (HHO) [82] 𝑘 = 0 

Whale optimization algorithm (WOA) [80] 𝑎1 = [2,0]; 𝑎2 = [−2,−1]; 𝑏 = 1 

Particle swarm optimizer (PSO) [79] 𝑊𝑚𝑎𝑥=0.9,𝑊𝑚𝑖𝑛 = 0.2 

Sine cosine algorithm (SCA) [83] 𝑎 = 2 

Salp swarm algorithm (SSA) [32] ~ 

Cuckoo search (CS) [104] 𝑃𝑎 = 0.25 

In the experiment, Peak Signal-to-Noise Ratio (PSNR) [105], Structural Similarity Index (SSIM) [106], and Feature Similarity Index 

(FSIM) [107] were employed as metrics to evaluate the results. Analysis was conducted based on the mean and variance of  these 

metrics, and statistical tests using WSRT [75] and FT [76] were performed. The algorithms underwent 2000 iterations, with image 

dimensions set at 480x270 pixels. The algorithm's solution set included 30 search agents, and each algorithm was independently 

run 30 times. 

6.2.1 Experimental at low threshold level 

This section categorized threshold levels of  2, 4, and 6 as low threshold groups. AO, along with eight algorithms, was utilized to 

segment the 15 images, and the segmentation results were compared. 

Tables A.3 to A.5 present all the thresholds discovered by various methods in 2, 4, and 6-level threshold segmentation for 15 

images, along with the corresponding computed fitness values (Kapur's entropy). By observing the results, it is evident that AO 

successfully identifies threshold sets that maximize Kapur's entropy for all images, demonstrating improved performance as the 

threshold levels increase. 

Figure 15 shows convergence curves for various algorithms during the segmentation experiment with 6-level thresholds for 

selected images. It is apparent that AO exhibits effective convergence in searching for the optimal threshold set, showcasing a 

reliable ability to find the maximum Kapur's entropy compared to other algorithms and achieving higher convergence accuracy. 

Notably, AO demonstrates excellent capability in locating the maximum value of  Kapur's entropy, especially at lower threshold 

levels during image segmentation experiments. 

 
Figure 15. Convergence curves of  Kapur's entropy at 6 threshold levels. 

Then, Appendices A.6 to A.8 display the average and standard deviation of  the three metrics after 30 iterations of  segmentation 

using AO and the other eight algorithms. Clearly, AO achieved the highest averages and the lowest standard deviations in most 

images, indicating its superior overall performance and relatively stable results in the task of  simple segmentation of  the targets. 



Tables 14, 15, and 16 present the statistical results of  these three metrics. The statistical results suggest that the AO outperforms 

the other algorithms overall for simple segmentation tasks. 

Table 14. The FSIM comparison results at low threshold level 

 2 thresholds 4 thresholds 6 thresholds 

 Mean Rank +/-/= Mean Rank +/-/= Mean Rank +/-/= 

AO 2.60  1 ~ 2.00  1 ~ 1.53  1 ~ 

RIME 3.20  3 3/1/11 2.53  3 6/0/9 2.67  2 6/0/9 

DE 3.13  2 6/4/5 2.07  2 4/3/8 2.80  3 7/1/7 

HHO 7.73  9 10/0/5 7.73  8 15/0/0 7.47  8 14/0/1 

WOA 6.13  7 8/0/7 6.67  7 14/0/1 7.00  7 15/0/0 

PSO 5.07  4 9/2/4 3.67  4 10/1/4 3.33  4 10/0/5 

SCA 6.47  8 7/2/6 9.00  9 15/0/0 9.00  9 15/0/0 

SSA 5.20  5 4/1/10 6.13  6 13/0/2 5.13  5 14/0/1 

CS 5.47  6 7/0/8 5.20  5 12/0/3 6.07  6 13/0/2 

Table 15. The PSNR comparison results at low threshold level 

 2 thresholds 4 thresholds 6 thresholds 

 Mean Rank +/-/= Mean Rank +/-/= Mean Rank +/-/= 

AO 1.67  1 ~ 1.93  1 ~ 2.07  1 ~ 

RIME 3.47  3 4/1/10 2.47  3 6/1/8 2.80  3 3/2/10 

DE 2.53  2 6/2/7 2.40  2 6/1/8 2.33  2 4/2/9 

HHO 8.00  9 13/0/2 8.00  8 15/0/0 7.53  8 15/0/0 

WOA 6.20  7 10/0/5 6.60  7 15/0/0 6.87  7 14/0/1 

PSO 6.67  8 12/0/3 3.53  4 10/1/4 2.80  3 6/3/6 

SCA 5.93  6 11/0/4 8.93  9 15/0/0 9.00  9 15/0/0 

SSA 5.47  5 10/0/5 6.13  6 14/0/1 5.93  6 14/0/1 

CS 5.07  4 8/0/7 5.00  5 12/0/3 5.67  5 13/0/2 

Table 16. The SSIM comparison results at low threshold level 

 2 thresholds 4 thresholds 6 thresholds 

 Mean Rank +/-/= Mean Rank +/-/= Mean Rank +/-/= 

AO 1.73  1 ~ 2.20  1 ~ 2.07  1 ~ 

RIME 3.13  3 3/0/12 2.20  2 4/2/9 2.80  3 3/2/10 

DE 2.60  2 6/1/8 2.27  3 4/3/8 2.53  2 5/2/8 

HHO 7.87  9 12/0/3 7.80  8 15/0/0 7.47  8 14/0/1 

WOA 6.40  7 12/0/3 6.60  7 14/0/1 6.67  7 14/0/1 

PSO 6.07  6 12/0/3 3.73  4 10/0/5 2.80  3 5/3/7 

SCA 6.87  8 9/0/6 8.87  9 15/0/0 9.00  9 15/0/0 

SSA 5.47  5 9/0/6 6.20  6 14/0/1 5.80  5 12/0/3 

CS 4.87  4 8/0/7 5.13  5 12/0/3 5.87  6 13/0/2 

In the analysis of  the segmentation results, as depicted in Figure 16, the segmentation outcomes of  BC15 at 6 threshold levels are 

presented; this sample image contains a more complex background and iconic tissue, which is relatively challenging in low 

thresholding. With an increase in the number of  thresholds, the image is segmented into more regions, thereby achieving higher 

accuracy, especially for images with multiple targets, textures, or complex structures. Upon examining the original image, the central 

region is observed to have a complex and dense structure, while the edges are unclear due to noise interference. After segmentation, 

these regions are distinctly separated. Upon close observation, the results segmented by AO exhibit vibrant colors and clear 

contours in the central region. The analysis of  these segmentation experiment results clearly indicates the superiority of  the 

proposed AO method over other algorithms in simple segmentation tasks. 



 

Figure 16. Comparison of  segmentation results for BC15 at 6 threshold levels. 

6.2.2 Experimental at high threshold level 

In this section, segmentation accuracy is enhanced by increasing the threshold levels. AO once again competes with the 8 

algorithms, segmenting the same set of  15 images.  

Figure 17 presents convergence curves for various algorithms during the segmentation experiment with 24-level thresholds for 

selected images. It is evident that AO demonstrates superior convergence when searching for the optimal threshold set at higher 

levels, achieving a faster, more precise ability to find the maximum of  Kapur's entropy compared to other algorithms, making it 

more reliable. Notably, when conducting more refined segmentation experiments, AO is more capable of  locating the maximum 

value of  Kapur's entropy than other algorithms. 



 

Figure 17. Convergence curves of  Kapur's entropy at 24 threshold levels. 

Tables A.9 to A.11 in the appendix list the averages and standard deviations of  the three metrics after segmentation. Clearly, in 

most images, AO outperforms other algorithms in both average and standard deviation at high threshold levels. Additionally, 

Tables 17, 18, and 19 summarize the statistical results of  these metrics when using WSRT and FT. The statistical analysis indicates 

that when facing higher segmentation accuracy requirements, AO continues to outperform other algorithms and exhibits greater 

stability and adaptability to fine segmentation tasks with higher threshold levels. 

Table 17. The FSIM comparison results at high threshold level 

 16 thresholds 20 thresholds 24 thresholds 

 Mean Rank +/-/= Mean Rank +/-/= Mean Rank +/-/= 

AO 1.67  1 ~ 1.27  1 ~ 1.60  1 ~ 

RIME 3.67  3 9/0/6 5.07  5 14/0/1 5.13  6 11/0/4 

DE 3.73  4 11/0/4 3.73  3 14/0/1 4.20  3 11/0/4 

HHO 8.13  8 14/0/1 7.87  8 15/0/0 8.07  8 15/0/0 

WOA 6.07  6 13/0/2 5.07  5 12/0/3 4.40  4 6/0/9 

PSO 2.33  2 7/0/8 3.93  4 11/0/4 4.40  4 8/0/7 

SCA 8.87  9 14/0/1 9.00  9 15/0/0 8.93  9 15/0/0 

SSA 3.93  5 11/1/3 2.53  2 8/0/7 1.87  2 3/0/11 

CS 6.60  7 13/0/2 6.53  7 14/0/1 6.40  7 13/0/2 

Table 18. The PSNR comparison results at high threshold level 

 16 thresholds 20 thresholds 24 thresholds 

 Mean Rank +/-/= Mean Rank +/-/= Mean Rank +/-/= 

AO 1.73  1 ~ 1.67  1 ~ 2.27  1 ~ 

RIME 3.00  3 3/1/11 4.67  6 2/0/13 4.87  6 5/0/10 

DE 3.93  4 5/1/9 4.40  5 8/0/7 4.60  5 7/0/8 

HHO 7.80  8 13/0/2 7.93  8 14/0/1 8.07  8 14/0/1 

WOA 4.93  5 5/0/10 4.00  4 3/1/11 3.33  3 3/0/12 

PSO 2.53  2 3/0/12 3.00  2 2/0/13 3.73  4 3/0/12 

SCA 9.00  9 15/0/0 9.00  9 15/0/0 8.93  9 15/0/0 

SSA 5.53  6 9/0/6 3.93  3 5/0/10 2.73  2 3/1/12 

CS 6.53  7 11/0/4 6.40  7 11/0/4 6.47  7 9/0/6 



Table 19. The SSIM comparison results at high threshold level 

 16 thresholds 20 thresholds 24 thresholds 

 Mean Rank +/-/= Mean Rank +/-/= Mean Rank +/-/= 

AO 2.13  1 ~ 1.27  1 ~ 1.80  1 ~ 

RIME 3.47  3 2/0/13 4.33  5 6/0/9 4.87  6 5/0/10 

DE 4.00  4 6/0/9 4.47  6 11/0/4 4.80  5 10/0/5 

HHO 7.73  8 12/0/3 7.53  8 14/0/1 7.87  8 14/0/1 

WOA 4.67  5 4/0/11 4.13  4 3/0/12 3.47  3 3/0/12 

PSO 2.27  2 1/1/13 3.67  2 4/0/11 4.33  4 7/0/8 

SCA 8.93  9 15/0/0 9.00  9 15/0/0 8.93  9 15/0/0 

SSA 5.07  6 10/0/5 3.87  3 6/0/9 2.67  2 4/0/11 

CS 6.73  7 10/0/5 6.73  7 11/0/4 6.27  7 10/0/5 

Furthermore, Figure 18 shows the original image, grayscale image, and non-local mean image of  BC03, where the edges of  the 

cellular tissue are more blurred and challenging for fine segmentation. At 24 threshold levels, each algorithm calculates the optimal 

threshold set using a 2D histogram composed of  grayscale and non-local mean images. After segmenting pixels of  the original 

image, different tissues in the image are precisely delineated with vibrant colors. Upon close observation, the results segmented by 

the AO preserve more local features of  the image and exhibit higher contrast. The analysis of  the results from the low threshold 

image segmentation experiments shows that the proposed AO performs exceptionally well in the segmentation of  24 threshold 

images in this model, outperforming other algorithms. 

 

Figure 18. Comparison of  segmentation results for BC03 at 24 threshold levels 



7.  Conclusion and future work 

This paper introduces an efficient metaheuristic algorithm, Artemisinin Optimization (AO), aiming to address contemporary 

complex optimization problems. The inspiration behind AO's design stems from the process of  artemisinin medicine treatment 

for malaria, which involves eradicating the malaria parasites parasitizing the human body. AO is crafted based on three treatment 

stages, each featuring distinct search strategies. In the design of  AO, the intricate human body is conceptualized as the solution 

space, the malaria parasites residing in the human body are considered potential solutions, and the artemisinin drug serves as 

search agents. Inspired by the early-stage treatment process involving the administration of  higher medicine doses to control the 

disease, a comprehensive elimination phase strategy is proposed. In this strategy, the algorithm gains global exploration capabilities, 

aiding in the rapid exploration of  the entire space; Drawing inspiration from the later-stage treatment process where the disease 

is gradually controlled and the dosage is reduced, the AO introduces a local clearance phase strategy, encouraging the algorithm 

to exploit potential optimal solutions within a local scope. Considering unforeseen circumstances that may arise during treatment, 

such as disease relapse triggered by the awakening of  dormant malaria parasites, a post-consolidation phase strategy is proposed, 

equipping the search agent with the ability to escape from local optima. 

In AO, the harmony between the core strategies of  metaheuristic algorithms, exploration, and exploitation is achieved by adjusting 

their weights appropriately, fostering their collaboration for optimal optimization outcomes. The effectiveness of  AO was tested 

through benchmark function experiments. AO was compared with eight widely acknowledged algorithms and eight high-

performance improved algorithms in the IEEE CEC 2014 and IEEE CEC 2022 benchmark function sets. The results were 

comprehensively analyzed and discussed, providing evidence of  the exceptional performance of  the proposed algorithm.  

Simultaneously, this study integrates AO into a classical application scenario of  MAs: Multi-Threshold Image Segmentation (MTIS), 

aiming to assess its excellent capabilities in handling practical applications. AO is combined with MTIS techniques to compute the 

optimal threshold set. The performance of  AO is experimentally evaluated using real data, conducting a comprehensive 

comparison with six threshold levels and eight algorithms that exhibit outstanding performance across 15 medical images. The 

experimental validation confirms its robust capabilities, particularly in real-world applications, especially in the medical field. These 

findings affirm AO as a powerful optimization tool capable of  addressing various challenges in the real world. 

In future research, the AO algorithm exhibits considerable potential in several directions. Firstly, it can be extended to tackle large-

scale problems in different domains, including feature selection in medical data [108], multi-objective optimization [109], and 

parameter tuning [110]. Additionally, exploring hybrids with other algorithms presents an exciting avenue for future research. 
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9. Appendix A 

Table A.1.IEEE CEC 2014 function list 



Class  Function Describe Range 𝐹𝑖 ∗ 

=  𝐹𝑖(𝑥 ∗ ) 

Unimodal  

Functions 

F1 Rotated High Conditioned Elliptic 

Function 

[−100,100] 100 

F2 Rotated Bent Cigar Function [−100,100] 200 

F3 Rotated Discus Function [−100,100] 300 

Simple  

Multimodal  

Functions 

F4 Shifted and Rotated Rosenbrock’s 

Function 

[−100,100] 400 

F5 Shifted and Rotated Ackley’s 

Function 

[−100,100] 500 

F6 Shifted and Rotated Weierstrass 

Function 

[−100,100] 600 

F7 Shifted and Rotated Griewank’s 

Function 

[−100,100] 700 

F8 Shifted Rastrigin’s Function [−100,100] 800 

F9 Shifted and Rotated Rastrigin’s 

Function 

[−100,100] 900 

F10 Shifted Schwefel’s Function [−100,100] 1000 

F11 Shifted and Rotated Schwefel’s 

Function 

[−100,100] 1100 

F12 Shifted and Rotated Katsuura 

Function 

[−100,100] 1200 

F13 Shifted and Rotated HappyCat 

Function 

[−100,100] 1300 

F14 Shifted and Rotated HGBat 

Function 

[−100,100] 1400 

F15 

Shifted and Rotated Expanded 

Griewank’s plus Rosenbrock’s 

Function 

[−100,100] 1500 

F16 Shifted and Rotated Expanded 

Schaffer's F6 Function 

[−100,100] 1600 

Hybrid  

Functions 

F17 Hybrid Function 1 (N=3) [−100,100] 1700 

F18 Hybrid Function 2 (N=3) [−100,100] 1800 

F19 Hybrid Function 3 (N=4) [−100,100] 1900 

F20 Hybrid Function 4 (N=4) [−100,100] 2000 

F21 Hybrid Function 5 (N=5) [−100,100] 2100 

F22 Hybrid Function 6 (N=5) [−100,100] 2200 

Composition  

Functions 

F23 Composition Function 1 (N=5) [−100,100] 2300 

F24 Composition Function 2 (N=3) [−100,100] 2400 

F25 Composition Function 3 (N=3) [−100,100] 2500 

F26 Composition Function 4 (N=5) [−100,100] 2600 

F27 Composition Function 5 (N=5) [−100,100] 2700 

F28 Composition Function 6 (N=5) [−100,100] 2800 

F29 Composition Function 7 (N=3) [−100,100] 2900 

F30 Composition Function 8 (N=3) [−100,100] 3000 

Table A.2. IEEE CEC 2022 functions 

Class Functions Describe 𝑓𝑖 

Unimodal F1 Shifted and full Rotated Zakharov Function 300 



Functions 

Multimodal 

Functions 

F2 Shifted and full Rotated Rosenbrock’s Function 400 

F3 Shifted and full Rotated Expanded Schaffer’s f6 

Function 

600 

F4 Shifted and full Rotated Non-Continuous Rastrigin’s 

Function 

800 

F5 Shifted and full Rotated Levy Function 900 

Hybrid 

Functions 

F6 Hybrid Function 1 (N = 3) 1800 

F7 Hybrid Function 2 (N = 6) 2000 

F8 Hybrid Function 3 (N = 5) 2200 

Composition 

Functions 

F9 Composition Function 1 (N = 5) 2300 

F10 Composition Function 2 (N = 4) 2400 

F11 Composition Function 3 (N = 5) 2600 

F12 Composition Function 4 (N = 6) 2700 

Table A.3. Threshold values and fitness at 2 threshold levels. 

Image Method AO RIME DE HHO WOA PSO SCA SSA CS 

BC01 Thresh1 119 119 119 151 122 119 105 119 119 

 Thresh2 209 209 209 209 209 209 211 209 209 

 Fitness 27.5208  27.5208  27.5208  27.2687  27.4956  27.5208  27.2400  27.5190  27.5208  

BC02 Thresh1 114 114 114 114 106 114 105 107 117 

 Thresh2 206 206 206 206 176 206 206 206 206 

 Fitness 27.3750  27.3750  27.3750  27.3735  27.2983  27.3750  27.2858  27.3541  27.3720  

BC03 Thresh1 128 128 128 159 167 144 116 102 113 

 Thresh2 228 228 228 228 228 228 229 228 227 

 Fitness 26.7235  26.7235  26.7235  26.1169  26.0992  26.1795  25.9917  26.5928  26.5382  

BC04 Thresh1 130 130 130 131 129 130 132 130 130 

 Thresh2 190 190 190 190 181 190 181 190 190 

 Fitness 28.4505  28.4505  28.4505  28.4174  28.4096  28.4505  28.4009  28.4492  28.4489  

BC05 Thresh1 103 103 103 105 82 124 142 124 101 

 Thresh2 174 174 174 174 174 174 185 174 174 

 Fitness 26.0579  26.0579  26.0579  26.0572  25.9562  25.8838  25.5833  25.8813  26.0547  

BC06 Thresh1 82 82 82 75 82 80 73 82 82 

 Thresh2 150 150 150 152 150 174 146 150 151 

 Fitness 25.3453  25.3453  25.3453  25.3366  25.3453  24.3765  25.3224  25.3453  25.3436  

BC07 Thresh1 108 108 108 108 108 113 107 108 107 

 Thresh2 153 153 153 153 153 199 153 153 153 

 Fitness 25.1519  25.1519  25.1519  25.1519  25.1519  24.2989  25.1091  25.1519  25.1515  

BC08 Thresh1 129 129 129 107 107 128 100 107 129 

 Thresh2 197 197 197 150 150 197 148 150 197 

 Fitness 25.2992  25.2992  25.2992  25.2374  25.2374  25.2989  25.2175  25.2374  25.2992  

BC09 Thresh1 117 117 117 91 109 116 118 115 117 

 Thresh2 197 197 197 197 197 197 215 186 197 

 Fitness 26.3062  26.3062  26.3062  26.1055  26.2228  26.3056  25.9218  26.1804  26.3062  

BC10 Thresh1 80 80 80 80 80 105 79 80 80 

 Thresh2 144 144 144 146 144 195 144 144 143 

 Fitness 25.6556  25.6556  25.6556  25.6530  25.6556  25.5480  25.6206  25.6556  25.6549  

BC11 Thresh1 112 112 112 111 130 130 96 83 122 

 Thresh2 190 190 190 190 190 190 162 188 190 



 Fitness 26.7265  26.7265  26.7265  26.7256  26.1493  26.1485  26.3633  26.5861  26.6636  

BC12 Thresh1 98 98 98 98 98 98 90 98 98 

 Thresh2 148 148 148 152 148 203 146 148 148 

 Fitness 25.4553  25.4553  25.4553  25.4327  25.4553  24.3847  25.4224  25.4553  25.4553  

BC13 Thresh1 74 74 74 74 74 92 74 74 74 

 Thresh2 132 132 132 132 132 175 129 132 132 

 Fitness 25.4532  25.4532  25.4532  25.4532  25.4532  24.1337  25.4461  25.4532  25.4532  

BC14 Thresh1 97 97 97 97 78 111 69 85 86 

 Thresh2 153 153 153 153 153 153 152 153 153 

 Fitness 37.4926  37.4926  37.4926  37.4926  37.4013  36.7233  37.2581  37.4551  37.4608  

BC15 Thresh1 112 112 112 125 129 135 111 133 136 

 Thresh2 185 185 185 185 185 185 179 185 185 

 Fitness 28.1936  28.1936  28.1936  28.1219  28.1376  28.1525  27.7541  28.1516  28.1504  

Table A.4. Threshold values and fitness at 4 threshold levels. 

Image Method AO RIME DE HHO WOA PSO SCA SSA CS 

BC01 Thresh1 42 42 75 51 50 42 23 68 80 

 Thresh2 120 120 132 114 124 118 80 121 128 

 Thresh3 170 170 179 151 158 167 155 156 158 

 Thresh4 202 202 205 190 185 202 206 197 202 

 Fitness 40.7552  40.7552  40.7454  40.4548  39.8013  40.7237  38.8494  40.5000  40.5375  

BC02 Thresh1 65 64 64 81 65 67 27 41 69 

 Thresh2 114 113 114 118 116 106 111 83 98 

 Thresh3 161 161 161 174 174 145 144 143 145 

 Thresh4 206 206 206 206 206 206 191 206 206 

 Fitness 40.7455  40.7413  40.7449  40.0005  39.7951  40.6789  38.7114  40.1980  40.4556  

BC03 Thresh1 99 99 99 88 88 94 108 65 110 

 Thresh2 140 140 140 132 140 137 158 148 135 

 Thresh3 188 188 188 182 182 171 175 170 188 

 Thresh4 228 228 228 212 228 228 206 228 230 

 Fitness 39.8598  39.8598  39.8596  38.8201  39.6133  39.8246  37.6524  39.2841  39.3636  

BC04 Thresh1 77 77 77 66 73 73 75 44 70 

 Thresh2 127 126 127 114 123 123 104 109 121 

 Thresh3 168 166 168 146 154 165 154 143 165 

 Thresh4 200 200 200 176 190 199 192 200 202 

 Fitness 41.3732  41.3699  41.3732  40.8131  40.9895  41.3584  39.1890  40.9695  41.2291  

BC05 Thresh1 76 76 76 74 86 72 26 83 76 

 Thresh2 124 124 124 111 130 119 88 117 120 

 Thresh3 170 170 170 138 187 172 143 148 174 

 Thresh4 209 209 209 188 207 209 172 188 209 

 Fitness 39.1483  39.1483  39.1483  38.5763  38.4936  39.1031  37.1289  38.6695  39.0823  

BC06 Thresh1 75 75 69 78 70 72 50 68 67 

 Thresh2 121 127 119 121 116 122 105 116 115 

 Thresh3 154 167 153 165 149 178 159 151 152 

 Thresh4 182 197 181 182 178 207 184 181 181 

 Fitness 37.9646  37.9131  37.9385  37.6723  37.8853  37.4938  36.9299  37.8697  37.8034  

BC07 Thresh1 98 99 97 82 87 91 96 8 86 

 Thresh2 141 142 140 130 133 132 137 15 128 

 Thresh3 170 171 168 157 169 168 148 66 150 



 Thresh4 199 200 198 184 199 198 189 169 190 

 Fitness 37.4748  37.4737  37.4731  37.3450  37.1979  37.2083  36.2452  37.6309  37.2702  

BC08 Thresh1 96 96 98 96 97 95 74 86 93 

 Thresh2 142 142 141 134 136 138 127 132 136 

 Thresh3 183 183 182 173 174 173 157 167 170 

 Thresh4 234 234 234 209 203 205 187 210 197 

 Fitness 38.4574  38.4574  38.4361  37.8709  38.3076  38.3623  37.0719  38.2440  38.2614  

BC09 Thresh1 78 79 78 78 89 76 36 82 74 

 Thresh2 122 125 125 125 130 122 120 132 127 

 Thresh3 159 162 163 169 163 164 154 171 159 

 Thresh4 197 201 201 217 197 201 188 201 201 

 Fitness 39.0450  39.0413  39.0429  38.8270  38.9932  39.0159  37.6022  38.9780  38.9294  

BC10 Thresh1 80 80 80 63 64 79 6 66 73 

 Thresh2 133 133 133 127 136 131 15 126 125 

 Thresh3 179 179 181 187 179 177 48 169 159 

 Thresh4 226 226 226 208 215 217 104 217 213 

 Fitness 38.8088  38.8088  38.8072  37.9930  38.5629  38.7785  37.9479  38.5626  38.6105  

BC11 Thresh1 69 68 69 74 54 67 7 78 73 

 Thresh2 125 125 117 134 121 112 98 122 121 

 Thresh3 161 162 145 183 171 141 135 151 165 

 Thresh4 190 190 190 216 190 173 178 201 190 

 Fitness 40.1107  40.0929  40.0408  39.0902  39.6057  36.7226  37.0204  39.8691  39.7641  

BC12 Thresh1 78 78 78 77 78 78 111 78 81 

 Thresh2 130 131 130 127 128 129 148 128 135 

 Thresh3 165 165 165 171 159 166 184 164 165 

 Thresh4 197 197 197 202 195 197 201 197 198 

 Fitness 38.0460  38.0453  38.0460  37.9784  38.0034  38.0339  37.3107  38.0337  37.9394  

BC13 Thresh1 68 68 68 70 66 72 88 63 67 

 Thresh2 111 111 111 122 109 119 125 107 119 

 Thresh3 146 145 146 157 145 151 152 143 150 

 Thresh4 177 177 177 192 177 187 199 176 189 

 Fitness 38.0221  38.0220  38.0221  37.9283  38.0189  37.9879  36.9386  38.0076  37.9460  

BC14 Thresh1 67 68 70 64 49 68 22 72 53 

 Thresh2 107 107 108 108 104 107 117 113 105 

 Thresh3 139 139 140 138 133 136 154 145 138 

 Thresh4 168 168 168 168 168 168 168 168 168 

 Fitness 50.2365  50.2358  50.2358  50.0188  50.0054  50.2222  47.2756  49.8117  50.0064  

BC15 Thresh1 42 42 75 51 50 42 23 68 80 

 Thresh2 120 120 132 114 124 118 80 121 128 

 Thresh3 170 170 179 151 158 167 155 156 158 

 Thresh4 202 202 205 190 185 202 206 197 202 

 Fitness 40.7552  40.7552  40.7454  40.4548  39.8013  40.7237  38.8494  40.5000  40.5375  

Table A.5. Threshold values and fitness at 6 threshold levels. 

Image Method AO RIME DE HHO WOA PSO SCA SSA CS 

BC01 Thresh1 53 47 54 83 50 42 40 52 47 

 Thresh2 92 87 92 99 66 87 87 75 80 

 Thresh3 119 116 119 117 101 117 91 113 122 

 Thresh4 148 144 149 148 149 144 160 147 140 

 Thresh5 179 176 180 166 180 172 177 182 177 



 Thresh6 209 209 209 220 213 209 217 209 210 

 Fitness 52.2315  52.2038  52.2179  50.7375  51.2683  52.1397  47.3415  51.6545  51.5506  

BC02 Thresh1 42 48 42 49 27 44 24 44 45 

 Thresh2 79 80 77 95 63 85 57 81 83 

 Thresh3 108 108 109 114 95 113 99 107 114 

 Thresh4 138 139 139 137 120 141 151 130 154 

 Thresh5 169 169 170 161 176 175 172 175 178 

 Thresh6 206 206 206 206 206 206 216 206 207 

 Fitness 52.1361  52.1128  52.1283  51.1448  51.0952  52.0129  48.3288  51.9445  51.3995  

BC03 Thresh1 48 54 41 31 26 34 21 88 83 

 Thresh2 97 95 91 63 86 91 97 115 116 

 Thresh3 134 134 137 109 140 140 105 135 146 

 Thresh4 166 164 167 132 167 171 122 158 171 

 Thresh5 201 197 196 181 211 204 175 214 203 

 Thresh6 230 228 230 214 230 230 211 230 230 

 Fitness 50.7991  50.7339  50.4350  47.9028  49.6005  50.4454  47.1519  49.6676  49.8509  

BC04 Thresh1 44 68 62 29 60 44 28 71 42 

 Thresh2 94 105 107 67 98 93 87 116 78 

 Thresh3 122 129 131 121 126 121 115 136 121 

 Thresh4 149 153 156 149 152 146 141 155 145 

 Thresh5 175 177 179 175 173 175 182 179 164 

 Thresh6 200 203 203 197 199 201 239 205 199 

 Fitness 51.9260  51.8370  51.7811  50.5132  51.0523  51.8024  46.0089  51.0901  51.1312  

BC05 Thresh1 62 31 31 19 27 68 25 53 67 

 Thresh2 100 98 95 90 105 106 74 99 108 

 Thresh3 131 129 128 116 132 139 132 129 128 

 Thresh4 163 160 162 144 165 168 153 154 170 

 Thresh5 187 185 186 181 187 189 190 182 187 

 Thresh6 209 209 209 200 203 209 230 209 217 

 Fitness 49.9159  49.9229  49.9352  48.4125  49.4862  49.7576  46.3382  49.3594  49.3466  

BC06 Thresh1 50 50 50 50 30 49 48 46 65 

 Thresh2 99 97 96 95 103 94 84 106 104 

 Thresh3 128 130 128 139 138 125 114 129 129 

 Thresh4 154 155 158 174 160 157 142 156 153 

 Thresh5 177 177 178 187 178 184 177 180 178 

 Thresh6 204 206 207 207 214 211 184 202 201 

 Fitness 48.8823  48.8097  48.8444  48.4344  48.1397  48.2349  45.3822  48.6753  48.3276  

BC07 Thresh1 50 8 52 20 91 75 3 79 20 

 Thresh2 99 15 99 24 126 128 4 125 24 

 Thresh3 130 41 134 45 151 157 24 153 44 

 Thresh4 159 73 163 97 174 180 47 181 55 

 Thresh5 185 120 184 138 191 203 76 204 109 

 Thresh6 209 174 213 164 208 221 97 224 142 

 Fitness 49.7549  48.1997  48.1118  49.0743  47.8565  48.1221  45.8283  48.0234  48.5875  

BC08 Thresh1 48 51 47 85 74 63 39 27 19 

 Thresh2 96 101 99 116 111 88 100 82 24 

 Thresh3 132 133 129 139 142 123 113 134 51 

 Thresh4 159 166 155 161 174 154 153 167 75 

 Thresh5 191 194 185 183 200 184 176 195 108 



 Thresh6 234 234 234 210 234 234 216 234 168 

 Fitness 49.5856  49.5326  49.5051  48.6200  48.7308  49.3563  45.4263  49.1260  49.3876  

BC09 Thresh1 43 46 42 42 41 40 88 55 69 

 Thresh2 86 87 88 78 77 89 126 106 91 

 Thresh3 119 123 117 110 111 119 151 141 126 

 Thresh4 147 151 148 137 140 148 175 166 154 

 Thresh5 180 181 182 180 176 183 235 194 189 

 Thresh6 219 219 217 218 201 215 253 228 217 

 Fitness 49.5370  49.5305  49.4668  48.9566  48.7719  49.3897  46.0659  48.7457  48.9524  

BC10 Thresh1 7 40 45 11 5 45 28 38 47 

 Thresh2 15 78 78 20 15 78 63 79 79 

 Thresh3 43 122 113 39 42 117 105 129 106 

 Thresh4 72 150 147 58 71 152 119 162 144 

 Thresh5 108 180 187 77 107 186 154 192 182 

 Thresh6 153 217 217 104 152 217 173 226 217 

 Fitness 49.9042  49.6752  49.5779  48.7686  49.4305  49.7079  46.0457  49.6956  49.2163  

BC11 Thresh1 65 64 59 50 70 50 45 58 69 

 Thresh2 100 100 102 71 98 96 72 90 102 

 Thresh3 125 124 126 125 139 122 82 125 128 

 Thresh4 146 147 146 153 162 143 110 147 146 

 Thresh5 169 172 170 176 175 170 125 171 178 

 Thresh6 201 201 201 216 201 201 179 196 205 

 Fitness 51.055  51.006  50.983  49.674  50.448  50.881  45.207  50.273  50.146  

BC12 Thresh1 68 68 69 70 66 71 41 55 77 

 Thresh2 111 113 111 108 112 113 66 110 112 

 Thresh3 139 140 139 137 138 140 135 136 144 

 Thresh4 164 164 164 161 164 163 175 160 167 

 Thresh5 188 188 188 187 188 188 189 186 198 

 Thresh6 210 208 208 207 208 209 214 208 217 

 Fitness 48.7168  48.7089  48.6786  48.4912  48.7032  48.6962  47.5179  48.5657  48.4052  

BC13 Thresh1 52 56 52 70 55 55 28 58 53 

 Thresh2 91 91 91 114 93 94 57 99 94 

 Thresh3 120 120 120 136 121 122 110 130 120 

 Thresh4 146 147 146 156 148 147 155 150 152 

 Thresh5 173 174 173 179 173 172 161 173 173 

 Thresh6 197 200 197 205 197 198 190 194 208 

 Fitness 49.0675  49.0532  49.0666  48.5218  49.0511  47.0537  45.4969  48.8517  48.8580  

BC14 Thresh1 34 33 34 47 64 41 15 48 43 

 Thresh2 68 66 65 73 88 68 54 102 81 

 Thresh3 97 96 96 93 109 101 90 118 107 

 Thresh4 122 123 122 113 128 130 98 136 126 

 Thresh5 147 151 145 151 151 153 144 146 150 

 Thresh6 168 168 168 168 168 168 151 168 169 

 Fitness 60.9886  60.9270  60.9553  59.8276  60.4923  60.6613  56.0493  58.9246  59.7111  

BC15 Thresh1 42 42 42 31 25 38 40 45 38 

 Thresh2 97 99 95 103 107 99 88 79 103 

 Thresh3 132 128 128 130 142 131 140 119 137 

 Thresh4 160 155 154 156 162 161 145 153 156 

 Thresh5 187 188 189 182 180 188 175 175 194 



 Thresh6 212 212 212 212 205 205 219 212 212 

 Fitness 51.2677  51.2062  51.0513  50.5180  49.8412  51.1109  48.4555  50.5764  50.6744  

Table A.6 FSIM evaluation results at low threshold 

  2 thresholds 4 thresholds 6 thresholds 

Image Method AVG STD AVG STD AVG STD 

BC01 AO 0.7308  0.0370  0.8883  0.0221  0.9465  0.0091  

 RIME 0.6860  0.0001  0.8828  0.0143  0.9448  0.0056  

 DE 0.7033  0.0296  0.8862  0.0090  0.9465  0.0039  

 HHO 0.6815  0.0789  0.8323  0.0529  0.8737  0.0518  

 WOA 0.7001  0.0564  0.8478  0.0398  0.9038  0.0232  

 PSO 0.7085  0.0368  0.8672  0.0133  0.9385  0.0096  

 SCA 0.6453  0.1200  0.8103  0.0698  0.8602  0.0471  

 SSA 0.7139  0.0527  0.8447  0.0464  0.9165  0.0233  

 CS 0.6738  0.0323  0.8672  0.0356  0.9070  0.0339  

BC02 AO 0.7568  0.0441  0.9134  0.0174  0.9524  0.0081  

 RIME 0.7370  0.0506  0.8941  0.0266  0.9447  0.0078  

 DE 0.7279  0.0424  0.8835  0.0181  0.9438  0.0076  

 HHO 0.6877  0.1159  0.8433  0.0520  0.9072  0.0280  

 WOA 0.7365  0.0638  0.8428  0.0737  0.8930  0.0446  

 PSO 0.7751  0.0320  0.8854  0.0196  0.9374  0.0059  

 SCA 0.6579  0.1338  0.8400  0.0568  0.8506  0.0566  

 SSA 0.7350  0.0682  0.8476  0.0521  0.9125  0.0324  

 CS 0.7281  0.0460  0.8643  0.0298  0.9192  0.0176  

BC03 AO 0.6687  0.0673  0.8373  0.0297  0.9037  0.0203  

 RIME 0.6317  0.0637  0.8341  0.0180  0.8908  0.0242  

 DE 0.6343  0.0569  0.8282  0.0093  0.8905  0.0237  

 HHO 0.5839  0.1260  0.7732  0.0683  0.8227  0.0744  

 WOA 0.5649  0.0991  0.7876  0.0643  0.8245  0.0660  

 PSO 0.6009  0.0607  0.8115  0.0280  0.8753  0.0458  

 SCA 0.6141  0.1308  0.7447  0.0913  0.7783  0.0992  

 SSA 0.5923  0.1168  0.7822  0.0562  0.8615  0.0571  

 CS 0.5636  0.0472  0.7834  0.0533  0.8414  0.0531  

BC04 AO 0.7121  0.0358  0.8800  0.0095  0.9291  0.0126  

 RIME 0.6995  0.0238  0.8677  0.0171  0.9210  0.0171  

 DE 0.7045  0.0318  0.8686  0.0092  0.9249  0.0119  

 HHO 0.6643  0.0964  0.7922  0.0843  0.8643  0.0605  

 WOA 0.6915  0.0588  0.8073  0.0680  0.8926  0.0355  

 PSO 0.6972  0.0126  0.8540  0.0187  0.9267  0.0140  

 SCA 0.6821  0.0928  0.7755  0.0861  0.8273  0.0786  

 SSA 0.6958  0.0377  0.8377  0.0493  0.8952  0.0236  

 CS 0.7024  0.0177  0.8376  0.0376  0.8792  0.0449  

BC05 AO 0.7537  0.0240  0.8714  0.0211  0.9350  0.0072  

 RIME 0.7615  0.0048  0.8776  0.0168  0.9338  0.0121  

 DE 0.7615  0.0050  0.8829  0.0074  0.9364  0.0072  

 HHO 0.7004  0.0675  0.8440  0.0358  0.8785  0.0428  

 WOA 0.7179  0.0570  0.8373  0.0429  0.8902  0.0424  

 PSO 0.7419  0.0379  0.8777  0.0147  0.9255  0.0124  

 SCA 0.7129  0.0716  0.7999  0.0474  0.8584  0.0373  

 SSA 0.7491  0.0373  0.8431  0.0520  0.9064  0.0311  



 CS 0.7553  0.0161  0.8607  0.0333  0.9052  0.0195  

BC06 AO 0.7761  0.0058  0.8924  0.0087  0.9404  0.0043  

 RIME 0.7744  0.0061  0.8891  0.0074  0.9334  0.0108  

 DE 0.7761  0.0047  0.8926  0.0041  0.9385  0.0054  

 HHO 0.7336  0.0447  0.8566  0.0290  0.8906  0.0352  

 WOA 0.7558  0.0307  0.8528  0.0443  0.9010  0.0280  

 PSO 0.7239  0.0344  0.8634  0.0172  0.9234  0.0123  

 SCA 0.7558  0.0133  0.7932  0.0973  0.8306  0.0936  

 SSA 0.7633  0.0132  0.8602  0.0270  0.9050  0.0289  

 CS 0.7685  0.0124  0.8798  0.0194  0.8979  0.0535  

BC07 AO 0.7207  0.0010  0.8723  0.0056  0.9213  0.0129  

 RIME 0.7210  0.0002  0.8615  0.0222  0.9103  0.0251  

 DE 0.7211  0.0000  0.8707  0.0057  0.9115  0.0152  

 HHO 0.6599  0.0797  0.8129  0.0476  0.8413  0.0711  

 WOA 0.6636  0.0731  0.8332  0.0480  0.8657  0.0420  

 PSO 0.6657  0.0622  0.8546  0.0272  0.9172  0.0065  

 SCA 0.7043  0.0274  0.7675  0.1009  0.7889  0.1132  

 SSA 0.6960  0.0419  0.8346  0.0622  0.8966  0.0232  

 CS 0.7201  0.0076  0.8491  0.0247  0.8555  0.0870  

BC08 AO 0.7274  0.0087  0.8945  0.0452  0.9441  0.0271  

 RIME 0.7291  0.0124  0.9033  0.0095  0.9423  0.0138  

 DE 0.7284  0.0133  0.9036  0.0130  0.9374  0.0176  

 HHO 0.7145  0.0882  0.8448  0.0420  0.9044  0.0410  

 WOA 0.7327  0.0218  0.8524  0.0497  0.8972  0.0604  

 PSO 0.7530  0.0319  0.9032  0.0108  0.9350  0.0341  

 SCA 0.7254  0.0300  0.7980  0.1040  0.8446  0.0707  

 SSA 0.7362  0.0213  0.8715  0.0530  0.9172  0.0230  

 CS 0.7263  0.0123  0.8849  0.0251  0.9166  0.0326  

BC09 AO 0.6560  0.0587  0.8723  0.0238  0.9184  0.0093  

 RIME 0.6449  0.0606  0.8579  0.0286  0.9122  0.0211  

 DE 0.6206  0.0607  0.8534  0.0239  0.9103  0.0180  

 HHO 0.6347  0.0925  0.7775  0.0675  0.8591  0.0684  

 WOA 0.6231  0.0808  0.8068  0.0668  0.8760  0.0546  

 PSO 0.6043  0.0498  0.8322  0.0208  0.9046  0.0195  

 SCA 0.6323  0.0941  0.7565  0.0630  0.7701  0.0734  

 SSA 0.6393  0.0995  0.8021  0.0463  0.8618  0.0540  

 CS 0.5751  0.0775  0.8053  0.0456  0.8797  0.0294  

BC10 AO 0.6661  0.0203  0.8700  0.0427  0.9051  0.0332  

 RIME 0.6567  0.0491  0.8581  0.0400  0.9084  0.0183  

 DE 0.6552  0.0092  0.8289  0.0413  0.8931  0.0151  

 HHO 0.5980  0.0886  0.7543  0.1101  0.8202  0.1295  

 WOA 0.6393  0.0712  0.7945  0.0794  0.8542  0.0598  

 PSO 0.5773  0.0654  0.7994  0.0710  0.8963  0.0209  

 SCA 0.5934  0.7643  0.7225  0.1245  0.7850  0.0715  

 SSA 0.6313  0.5346  0.7905  0.0553  0.8756  0.0386  

 CS 0.6536  0.0167  0.7871  0.0721  0.8837  0.0387  

BC11 AO 0.7361  0.0476  0.8775  0.0142  0.9232  0.0143  

 RIME 0.7459  0.0275  0.8763  0.0149  0.9270  0.0126  

 DE 0.7558  0.0131  0.8779  0.0142  0.9199  0.0142  



 HHO 0.6914  0.0659  0.8152  0.0793  0.8951  0.0404  

 WOA 0.6996  0.0583  0.8469  0.0168  0.8853  0.0578  

 PSO 0.7224  0.0431  0.8506  0.0054  0.9195  0.0187  

 SCA 0.6275  0.1027  0.7776  0.0691  0.8297  0.0523  

 SSA 0.7169  0.0491  0.8365  0.0575  0.8964  0.0343  

 CS 0.7267  0.0422  0.8608  0.0258  0.9180  0.0178  

BC12 AO 0.7084  0.0068  0.8913  0.0092  0.9389  0.0045  

 RIME 0.7009  0.0237  0.8912  0.0022  0.9396  0.0042  

 DE 0.7130  0.0000  0.8936  0.0011  0.9385  0.0053  

 HHO 0.6869  0.0604  0.8614  0.0331  0.9161  0.0203  

 WOA 0.6990  0.0506  0.8681  0.0296  0.9180  0.0257  

 PSO 0.6814  0.0507  0.8951  0.0044  0.9367  0.0038  

 SCA 0.6994  0.0268  0.8065  0.0578  0.8367  0.0624  

 SSA 0.6897  0.0484  0.8892  0.0096  0.9302  0.0147  

 CS 0.7089  0.0136  0.8744  0.0490  0.9251  0.0181  

BC13 AO 0.7122  0.0090  0.8812  0.0040  0.9369  0.0030  

 RIME 0.7128  0.0082  0.8829  0.0052  0.9369  0.0083  

 DE 0.7102  0.0029  0.8806  0.0038  0.9392  0.0023  

 HHO 0.7030  0.0731  0.8601  0.0228  0.9039  0.0199  

 WOA 0.7121  0.0174  0.8727  0.0156  0.9239  0.0167  

 PSO 0.7136  0.0497  0.8728  0.0075  0.9301  0.0122  

 SCA 0.7000  0.0325  0.7741  0.0807  0.8106  0.1225  

 SSA 0.7064  0.0242  0.8744  0.0125  0.9264  0.0168  

 CS 0.7108  0.0128  0.8783  0.0118  0.9239  0.0157  

BC14 AO 0.7081  0.0111  0.7764  0.0341  0.8190  0.0345  

 RIME 0.6997  0.0050  0.7756  0.0319  0.8005  0.0238  

 DE 0.7004  0.0033  0.8060  0.0171  0.8106  0.0112  

 HHO 0.6456  0.0829  0.7316  0.1031  0.8074  0.0531  

 WOA 0.6596  0.0913  0.7371  0.0816  0.7994  0.0303  

 PSO 0.6943  0.0088  0.7826  0.0215  0.8333  0.0289  

 SCA 0.6813  0.1053  0.6048  0.1582  0.7156  0.1290  

 SSA 0.6226  0.1037  0.7534  0.0538  0.8241  0.0678  

 CS 0.6575  0.0561  0.7650  0.0363  0.8020  0.0364  

BC15 AO 0.7056  0.0345  0.8664  0.0228  0.9247  0.0211  

 RIME 0.7111  0.0116  0.8724  0.0162  0.9203  0.0251  

 DE 0.7122  0.0222  0.8721  0.0270  0.9069  0.0310  

 HHO 0.6921  0.0801  0.7923  0.0774  0.8923  0.0531  

 WOA 0.6620  0.0736  0.8122  0.0735  0.8794  0.0446  

 PSO 0.7116  0.0031  0.8663  0.0221  0.9218  0.0209  

 SCA 0.5938  0.1356  0.7427  0.1030  0.8251  0.0829  

 SSA 0.6865  0.0697  0.8194  0.0755  0.9016  0.0417  

 CS 0.6940  0.0221  0.8416  0.0422  0.8806  0.0413  

Table A.7 PSNR evaluation results at low threshold 

  2 thresholds 4 thresholds 6 thresholds 

Image Method AVG STD AVG STD AVG STD 

BC01 AO 14.4298  1.4809  19.8827  0.5628  22.9130  0.4972  

 RIME 13.0646  0.0021  19.6940  0.5106  22.7632  0.4443  

 DE 13.4478  0.9739  19.6409  0.3160  22.9456  0.2724  

 HHO 12.7583  2.0591  17.6209  1.8392  20.0550  2.1371  



 WOA 13.3573  1.5662  18.3963  1.5344  20.9262  1.3886  

 PSO 13.2897  0.4377  19.3380  0.3673  22.5898  0.5931  

 SCA 12.3189  2.4586  17.3652  2.1641  19.4766  2.0535  

 SSA 13.5769  1.3863  17.9573  1.7689  21.0224  1.1918  

 CS 12.8446  0.5248  18.9861  0.9224  21.2389  1.5464  

BC02 AO 15.3730  1.5606  20.5369  0.6266  23.1086  0.4062  

 RIME 14.0918  1.4217  19.9389  0.7992  22.7834  0.5007  

 DE 14.0871  1.4122  19.4070  0.6646  22.9079  0.3791  

 HHO 12.9209  2.4898  17.8404  1.9158  21.0338  1.2117  

 WOA 14.5603  2.0845  18.0495  2.4716  20.3306  1.9814  

 PSO 13.8400  0.2848  19.3875  0.7385  22.5523  0.4864  

 SCA 12.9469  2.4395  18.0001  1.8602  18.7874  2.1989  

 SSA 14.1159  1.7170  18.2061  1.8977  21.2404  1.6579  

 CS 13.3475  0.4426  18.4184  1.4491  21.6519  0.7903  

BC03 AO 13.8104  1.9328  18.8532  1.1154  22.0866  0.8871  

 RIME 12.8013  1.8023  18.7672  0.6143  21.5914  1.0407  

 DE 12.8748  1.6014  18.5174  0.2941  21.6306  0.7835  

 HHO 11.5769  3.5694  16.9783  2.0608  19.1233  2.5967  

 WOA 10.7799  2.5666  17.4861  1.7467  19.2027  2.1124  

 PSO 12.0322  1.6762  18.1969  1.0319  21.1193  1.4223  

 SCA 12.8383  2.9767  16.3233  2.4154  17.7176  2.6742  

 SSA 11.8276  3.1190  17.3558  1.8459  20.6130  1.9044  

 CS 11.0364  1.2309  17.4473  1.5770  19.7682  1.8298  

BC04 AO 13.9361  1.3551  20.0958  0.4717  23.1410  0.8055  

 RIME 13.3384  0.9560  19.5713  0.7599  22.4973  1.1469  

 DE 13.5681  1.2284  19.5326  0.5424  22.8683  0.6439  

 HHO 12.8466  2.3489  17.5555  2.8351  20.3224  2.2832  

 WOA 13.4299  1.6975  17.6010  2.4757  21.6706  1.8716  

 PSO 13.1086  0.2250  19.0900  0.9656  22.7772  0.7891  

 SCA 13.8152  2.6886  17.0343  2.3169  18.9965  2.5547  

 SSA 13.2744  1.1073  18.6035  1.9194  21.4825  1.2525  

 CS 13.1564  0.3299  18.6493  1.4567  21.1282  2.0251  

BC05 AO 16.1721  0.9455  20.7040  0.5928  23.4456  0.5056  

 RIME 16.2436  0.3235  20.1936  0.6590  23.3030  0.5500  

 DE 16.4146  0.2791  20.4114  0.3806  23.4991  0.5681  

 HHO 13.9238  2.1781  18.5138  1.6185  20.7455  1.7291  

 WOA 14.5748  1.8408  18.6220  1.6993  21.2944  2.0646  

 PSO 14.9072  1.9375  19.8753  0.7470  22.7926  0.8940  

 SCA 14.9764  1.9566  17.9082  1.7751  20.3016  1.5390  

 SSA 15.7078  1.5866  18.5168  1.9729  22.0274  1.3462  

 CS 15.8024  0.7203  19.2188  1.2087  21.8236  1.1159  

BC06 AO 17.0184  0.3632  21.7094  0.6680  24.3030  0.4363  

 RIME 16.9109  0.3813  21.7683  0.7507  23.6717  0.9435  

 DE 17.0017  0.3108  21.9045  0.3794  24.1298  0.3920  

 HHO 14.9645  1.4916  19.2658  1.2478  21.0919  1.6355  

 WOA 16.0440  1.3056  19.7356  2.3713  21.7706  1.5658  

 PSO 14.2832  1.4004  19.4815  0.9148  23.0130  0.9081  

 SCA 16.3668  0.6476  17.7946  3.2315  19.3399  3.4324  

 SSA 16.3755  0.6550  19.8603  1.4267  21.9178  1.6791  



 CS 16.7879  0.6396  20.9956  1.2585  21.9577  2.3393  

BC07 AO 17.5240  0.0315  20.4829  0.5312  23.0648  0.8380  

 RIME 17.5171  0.0091  19.9710  0.8030  22.5715  1.2979  

 DE 17.5188  0.0000  20.3844  0.4746  22.5079  1.1124  

 HHO 13.8292  2.4122  18.5731  1.7503  20.0723  2.6669  

 WOA 14.3617  2.7781  19.2093  1.7489  20.8559  1.8703  

 PSO 13.7435  2.1904  19.8888  1.1508  23.0272  0.6506  

 SCA 16.8193  0.9226  17.9044  2.4447  18.4463  2.7127  

 SSA 16.0566  2.2109  19.7046  1.9156  22.2269  1.0931  

 CS 17.4508  0.2761  20.0837  1.1871  20.9959  2.7628  

BC08 AO 15.7121  0.6077  19.9249  1.1946  23.2118  0.9198  

 RIME 15.5487  0.8135  19.9984  0.3892  23.0541  0.5775  

 DE 15.5437  0.7951  19.8883  0.4203  22.8528  0.7428  

 HHO 13.4367  2.6517  17.7358  1.7400  20.8830  2.0373  

 WOA 14.7874  1.3877  18.2378  1.8374  21.0461  2.0219  

 PSO 13.7662  1.4474  20.1901  0.4658  22.8771  1.1608  

 SCA 15.4618  0.6822  16.9815  2.7294  18.5535  2.3134  

 SSA 15.2994  0.9132  19.1641  1.4626  21.3634  1.3262  

 CS 15.5633  0.8158  19.3000  0.8990  21.5278  1.5083  

BC09 AO 16.4583  1.6344  21.5545  0.5940  23.3661  0.4766  

 RIME 16.1171  1.7292  21.0031  1.0081  23.1860  0.9244  

 DE 15.4248  1.7314  21.1955  0.6029  23.2850  0.5906  

 HHO 14.3265  2.5918  18.7892  1.9962  21.8614  1.9799  

 WOA 14.6133  2.5359  19.2005  2.1915  22.1777  2.0169  

 PSO 13.8526  1.0961  20.3398  0.7264  22.9816  0.7897  

 SCA 15.3772  2.4779  17.7125  1.6742  18.9344  2.2230  

 SSA 15.2798  3.0315  19.1695  1.5100  21.3516  1.6312  

 CS 13.8751  1.6505  19.4322  1.4820  22.5102  0.9743  

BC10 AO 16.8143  0.8087  21.5120  1.0773  22.9591  0.8835  

 RIME 16.3824  1.8850  21.0854  1.1929  22.9802  0.8523  

 DE 16.5996  0.2416  20.5662  1.0437  22.6092  0.7587  

 HHO 13.1335  3.3611  17.8954  2.5721  20.4412  3.8017  

 WOA 14.9994  2.7542  18.7451  2.6464  21.4403  1.9866  

 PSO 12.7175  2.0803  19.8793  1.5964  22.7904  1.0137  

 SCA 15.8327  2.2826  17.6074  3.4091  19.5742  2.1369  

 SSA 15.6789  2.6706  19.2042  1.4540  21.8889  1.2801  

 CS 16.5445  0.4208  19.0575  1.7346  22.2825  1.4559  

BC11 AO 14.6650  1.3233  20.3124  0.4883  23.0432  0.5367  

 RIME 14.6510  1.0075  20.5834  0.3347  23.3802  0.6808  

 DE 14.4335  1.0457  20.3821  0.3891  23.5939  0.4166  

 HHO 13.9964  2.1690  18.3532  2.6372  21.3177  1.7637  

 WOA 14.4055  1.3427  19.1104  1.3285  21.1308  2.4114  

 PSO 14.9765  0.8457  20.6385  0.1449  23.5644  0.6017  

 SCA 12.8882  2.8104  16.8396  1.9135  18.6901  1.9804  

 SSA 14.4954  1.1117  19.1144  2.3365  21.3159  2.0039  

 CS 14.2119  1.0188  19.3369  0.8387  22.3277  1.1786  

BC12 AO 16.0955  0.3700  20.9623  0.5213  23.4994  0.3916  

 RIME 15.6469  1.4706  20.9520  0.1308  23.6239  0.3281  

 DE 16.2317  0.0000  21.0778  0.0375  23.5950  0.4644  



 HHO 13.9171  1.9179  19.2074  1.2833  22.3011  1.2538  

 WOA 14.7801  1.7783  19.5501  1.3237  22.3785  1.7314  

 PSO 12.8783  1.8081  20.7048  0.2529  23.8429  0.4556  

 SCA 15.7327  0.7348  17.9529  1.9416  18.7038  2.2956  

 SSA 14.5092  2.1614  20.5221  0.4522  22.9978  1.0059  

 CS 16.0679  0.3464  20.0876  1.3777  22.5218  1.2232  

BC13 AO 15.4591  0.3214  21.0463  0.2954  23.5623  0.3732  

 RIME 15.4494  0.3127  21.0144  0.2724  23.7797  0.5648  

 DE 15.5030  0.0969  21.1021  0.2228  23.8668  0.2491  

 HHO 14.1058  1.3798  19.8385  1.4028  22.2412  1.1341  

 WOA 15.2234  0.5702  20.3832  0.8709  23.2027  0.9468  

 PSO 14.1607  0.9164  20.9390  0.3354  23.7869  0.4816  

 SCA 15.2538  0.8358  17.3605  2.2365  18.6701  3.0371  

 SSA 15.2339  0.5932  20.2965  0.6998  22.8323  1.2805  

 CS 15.5566  0.5114  20.4205  0.6934  22.7885  0.9844  

BC14 AO 16.0574  0.2534  19.1048  0.9052  20.7540  0.7781  

 RIME 16.2537  0.1144  19.2027  0.8934  20.6468  0.7497  

 DE 16.2303  0.0983  19.9310  0.4625  20.9493  0.3503  

 HHO 14.8387  1.8253  17.8811  2.1725  19.6659  1.4917  

 WOA 15.1800  2.1493  17.7894  2.2282  20.1266  1.0566  

 PSO 16.0846  0.1398  19.3118  0.5923  21.3863  0.6444  

 SCA 11.2522  2.6964  14.2982  2.9164  16.5136  2.8607  

 SSA 14.4385  2.0922  17.9486  1.4019  20.2840  1.9059  

 CS 15.1312  1.5425  18.8941  0.7669  20.4101  1.0973  

BC15 AO 14.1643  0.7935  19.3284  0.6980  22.9923  1.2185  

 RIME 14.1479  0.3276  19.3533  0.8093  23.0058  0.9767  

 DE 14.2109  0.6872  19.2051  0.7418  22.6499  1.1842  

 HHO 13.8809  2.4190  17.5124  2.3791  21.7991  2.0294  

 WOA 13.0414  2.1137  18.2056  2.2499  21.1481  1.6455  

 PSO 14.0878  0.0971  19.3689  0.5388  23.1182  0.7508  

 SCA 11.4715  3.9746  15.9721  2.7540  19.0266  2.5889  

 SSA 13.8045  1.6219  18.2504  2.5425  21.7776  1.9525  

 CS 13.9873  0.3343  18.9672  1.3213  21.4056  1.7351  

Table A.8 SSIM evaluation results at low threshold 

  2 thresholds 4 thresholds 6 thresholds 

Image Method AVG STD AVG STD AVG STD 

BC01 AO 0.6304  0.0694  0.8277  0.0220  0.8982  0.0123  

 RIME 0.5589  0.0003  0.8211  0.0172  0.8953  0.0109  

 DE 0.5807  0.0464  0.8169  0.0126  0.8991  0.0062  

 HHO 0.5421  0.1149  0.7539  0.0756  0.8139  0.0803  

 WOA 0.5748  0.0820  0.7806  0.0583  0.8502  0.0418  

 PSO 0.5768  0.0313  0.8114  0.0115  0.8918  0.0156  

 SCA 0.5068  0.1547  0.7309  0.1003  0.8032  0.0717  

 SSA 0.5854  0.0714  0.7588  0.0712  0.8504  0.0338  

 CS 0.5406  0.0468  0.7965  0.0377  0.8534  0.0491  

BC02 AO 0.6879  0.0834  0.8578  0.0224  0.9041  0.0076  

 RIME 0.6265  0.0776  0.8371  0.0289  0.8977  0.0109  

 DE 0.6262  0.0688  0.8178  0.0228  0.9003  0.0088  

 HHO 0.5535  0.1615  0.7706  0.0706  0.8578  0.0342  



 WOA 0.6422  0.1134  0.7637  0.1069  0.8288  0.0655  

 PSO 0.6314  0.0228  0.8228  0.0216  0.8928  0.0113  

 SCA 0.5322  0.1729  0.7717  0.0874  0.7756  0.0924  

 SSA 0.6168  0.1038  0.7730  0.0783  0.8594  0.0530  

 CS 0.5933  0.0368  0.7866  0.0522  0.8718  0.0211  

BC03 AO 0.5913  0.0825  0.7864  0.0349  0.8545  0.0225  

 RIME 0.5481  0.0778  0.7869  0.0203  0.8438  0.0267  

 DE 0.5529  0.0663  0.7789  0.0111  0.8416  0.0271  

 HHO 0.4516  0.1874  0.7058  0.0907  0.7682  0.0904  

 WOA 0.4404  0.1358  0.7287  0.0717  0.7766  0.0795  

 PSO 0.4921  0.0715  0.7584  0.0336  0.8252  0.0539  

 SCA 0.5089  0.1676  0.6803  0.1037  0.7157  0.1169  

 SSA 0.4778  0.1658  0.7221  0.0640  0.8125  0.0654  

 CS 0.4537  0.0622  0.7176  0.0638  0.7904  0.0617  

BC04 AO 0.5982  0.0390  0.7924  0.0237  0.8852  0.0275  

 RIME 0.5940  0.0277  0.7696  0.0276  0.8703  0.0312  

 DE 0.5961  0.0340  0.7682  0.0186  0.8767  0.0225  

 HHO 0.5388  0.1336  0.7190  0.1149  0.8069  0.0781  

 WOA 0.5805  0.0807  0.7208  0.0963  0.8427  0.0500  

 PSO 0.5873  0.0149  0.7676  0.0274  0.8802  0.0197  

 SCA 0.5689  0.1341  0.6962  0.1083  0.7608  0.0989  

 SSA 0.5858  0.0512  0.7627  0.0687  0.8352  0.0392  

 CS 0.5911  0.0154  0.7578  0.0523  0.8295  0.0556  

BC05 AO 0.6803  0.0347  0.8113  0.0148  0.8767  0.0113  

 RIME 0.6767  0.0103  0.8030  0.0190  0.8721  0.0173  

 DE 0.6777  0.0154  0.8069  0.0070  0.8773  0.0135  

 HHO 0.6001  0.0775  0.7669  0.0452  0.8199  0.0422  

 WOA 0.6250  0.0724  0.7638  0.0638  0.8271  0.0608  

 PSO 0.6502  0.0549  0.8024  0.0175  0.8641  0.0250  

 SCA 0.6300  0.0961  0.7280  0.0611  0.7980  0.0476  

 SSA 0.6632  0.0541  0.7603  0.0718  0.8424  0.0349  

 CS 0.6607  0.0337  0.7876  0.0368  0.8399  0.0261  

BC06 AO 0.7060  0.0137  0.8267  0.0213  0.8813  0.0145  

 RIME 0.7027  0.0153  0.8210  0.0254  0.8680  0.0271  

 DE 0.7083  0.0079  0.8290  0.0051  0.8767  0.0115  

 HHO 0.6291  0.0536  0.7601  0.0562  0.8041  0.0578  

 WOA 0.6740  0.0376  0.7618  0.0761  0.8305  0.0398  

 PSO 0.5879  0.0433  0.7478  0.0352  0.8462  0.0236  

 SCA 0.6789  0.0267  0.7049  0.1209  0.7509  0.1174  

 SSA 0.6839  0.0169  0.7647  0.0534  0.8154  0.0563  

 CS 0.6954  0.0205  0.8028  0.0450  0.8241  0.0739  

BC07 AO 0.6723  0.0003  0.7912  0.0194  0.8429  0.0266  

 RIME 0.6723  0.0001  0.7722  0.0325  0.8429  0.0360  

 DE 0.6724  0.0000  0.7915  0.0170  0.8340  0.0307  

 HHO 0.5436  0.1064  0.7287  0.0539  0.7675  0.0932  

 WOA 0.5686  0.1170  0.7525  0.0579  0.7953  0.0540  

 PSO 0.5489  0.0954  0.7667  0.0277  0.8550  0.0153  

 SCA 0.6396  0.0272  0.6911  0.1124  0.7086  0.1155  

 SSA 0.6301  0.0658  0.7521  0.0747  0.8277  0.0339  



 CS 0.6688  0.0051  0.7803  0.0418  0.7893  0.0986  

BC08 AO 0.7060  0.0219  0.8550  0.0567  0.9195  0.0210  

 RIME 0.6993  0.0292  0.8607  0.0111  0.9196  0.0087  

 DE 0.6971  0.0288  0.8562  0.0115  0.9148  0.0119  

 HHO 0.6030  0.1363  0.7872  0.0585  0.8671  0.0544  

 WOA 0.6719  0.0497  0.7999  0.0619  0.8651  0.0803  

 PSO 0.6377  0.0547  0.8646  0.0150  0.9121  0.0300  

 SCA 0.6896  0.0383  0.7346  0.1399  0.7801  0.1024  

 SSA 0.6929  0.0320  0.8268  0.0619  0.8804  0.0332  

 CS 0.6985  0.0320  0.8370  0.0331  0.8799  0.0428  

BC09 AO 0.5797  0.0803  0.8169  0.0236  0.8664  0.0135  

 RIME 0.5635  0.0839  0.8036  0.0316  0.8617  0.0264  

 DE 0.5300  0.0840  0.8037  0.0221  0.8630  0.0196  

 HHO 0.5303  0.1210  0.7155  0.0838  0.8129  0.0876  

 WOA 0.5221  0.1131  0.7404  0.0833  0.8239  0.0705  

 PSO 0.4925  0.0591  0.7789  0.0205  0.8551  0.0229  

 SCA 0.5443  0.1242  0.6781  0.0708  0.6990  0.0979  

 SSA 0.5493  0.1408  0.7361  0.0578  0.8008  0.0685  

 CS 0.4651  0.0936  0.7463  0.0538  0.8371  0.0296  

BC10 AO 0.5945  0.0269  0.8128  0.0403  0.8513  0.0347  

 RIME 0.5810  0.0646  0.8018  0.0381  0.8543  0.0223  

 DE 0.5844  0.0106  0.7788  0.0361  0.8433  0.0217  

 HHO 0.4828  0.1386  0.6776  0.1220  0.7618  0.1578  

 WOA 0.5448  0.1013  0.7220  0.0966  0.7991  0.0742  

 PSO 0.4672  0.0846  0.7458  0.0791  0.8471  0.0280  

 SCA 0.5521  0.1047  0.6522  0.1595  0.7229  0.0896  

 SSA 0.5538  0.1119  0.7257  0.0565  0.8207  0.0380  

 CS 0.5845  0.0234  0.7228  0.0823  0.8313  0.0416  

BC11 AO 0.6517  0.0530  0.8546  0.0173  0.9082  0.0108  

 RIME 0.6587  0.0216  0.8646  0.0112  0.9169  0.0133  

 DE 0.6610  0.0132  0.8610  0.0105  0.9182  0.0077  

 HHO 0.6072  0.1020  0.7757  0.1215  0.8642  0.0540  

 WOA 0.6296  0.0596  0.8128  0.0400  0.8559  0.0761  

 PSO 0.6533  0.0397  0.8518  0.0053  0.9182  0.0136  

 SCA 0.5369  0.1452  0.7085  0.0978  0.7826  0.0632  

 SSA 0.6416  0.0494  0.8090  0.0856  0.8681  0.0488  

 CS 0.6477  0.0427  0.8236  0.0281  0.8914  0.0274  

BC12 AO 0.6741  0.0091  0.8641  0.0142  0.9089  0.0071  

 RIME 0.6567  0.0549  0.8652  0.0037  0.9116  0.0064  

 DE 0.6795  0.0000  0.8667  0.0011  0.9109  0.0089  

 HHO 0.6078  0.0837  0.8169  0.0430  0.8865  0.0261  

 WOA 0.6359  0.0722  0.8253  0.0378  0.8854  0.0399  

 PSO 0.5691  0.0772  0.8562  0.0059  0.9141  0.0098  

 SCA 0.6556  0.0437  0.7595  0.0741  0.7726  0.0866  

 SSA 0.6203  0.0867  0.8530  0.0111  0.8975  0.0214  

 CS 0.6718  0.0196  0.8330  0.0646  0.8887  0.0284  

BC13 AO 0.6589  0.0039  0.8615  0.0080  0.9069  0.0076  

 RIME 0.6575  0.0028  0.8648  0.0064  0.9131  0.0098  

 DE 0.6559  0.0023  0.8629  0.0044  0.9128  0.0062  



 HHO 0.6087  0.0806  0.8321  0.0389  0.8875  0.0243  

 WOA 0.6570  0.0232  0.8495  0.0235  0.9039  0.0175  

 PSO 0.6101  0.0583  0.8528  0.0084  0.9107  0.0109  

 SCA 0.6463  0.0562  0.7295  0.1031  0.7625  0.1576  

 SSA 0.6492  0.0313  0.8419  0.0231  0.8929  0.0299  

 CS 0.6615  0.0265  0.8523  0.0218  0.8955  0.0218  

BC14 AO 0.6827  0.0038  0.7630  0.0543  0.8224  0.0384  

 RIME 0.6810  0.0048  0.7635  0.0551  0.8042  0.0410  

 DE 0.6817  0.0033  0.8125  0.0287  0.8219  0.0185  

 HHO 0.6062  0.1189  0.7118  0.1290  0.7982  0.0546  

 WOA 0.6275  0.1237  0.7202  0.1115  0.8042  0.0413  

 PSO 0.6762  0.0085  0.7781  0.0382  0.8468  0.0349  

 SCA 0.4076  0.1815  0.5391  0.2033  0.6622  0.1610  

 SSA 0.5690  0.1503  0.7336  0.0738  0.8178  0.0876  

 CS 0.6139  0.0868  0.7601  0.0495  0.8071  0.0555  

BC15 AO 0.6028  0.0436  0.7956  0.0267  0.8682  0.0280  

 RIME 0.6070  0.0111  0.8015  0.0229  0.8671  0.0293  

 DE 0.6099  0.0293  0.7997  0.0260  0.8551  0.0346  

 HHO 0.5761  0.1161  0.7177  0.0988  0.8464  0.0626  

 WOA 0.5431  0.1101  0.7418  0.0929  0.8345  0.0593  

 PSO 0.6097  0.0032  0.8038  0.0212  0.8704  0.0191  

 SCA 0.4392  0.2121  0.6509  0.1298  0.7563  0.1058  

 SSA 0.5708  0.0885  0.7432  0.0965  0.8430  0.0580  

 CS 0.5881  0.0252  0.7732  0.0513  0.8220  0.0524  

Table A.9 FSIM evaluation results at high threshold 

  16 thresholds 20 thresholds  24 thresholds  

Image Method AVG STD AVG STD AVG STD 

BC01 AO 0.9847  0.0031  0.9881  0.0019  0.9889  0.0037  

 RIME 0.9802  0.0062  0.9835  0.0065  0.9868  0.0033  

 DE 0.9801  0.0044  0.9849  0.0044  0.9876  0.0040  

 HHO 0.9687  0.0173  0.9785  0.0079  0.9844  0.0068  

 WOA 0.9766  0.0067  0.9845  0.0048  0.9900  0.0028  

 PSO 0.9820  0.0042  0.9840  0.0050  0.9880  0.0031  

 SCA 0.9492  0.0238  0.9586  0.0223  0.9658  0.0147  

 SSA 0.9818  0.0044  0.9868  0.0047  0.9896  0.0026  

 CS 0.9769  0.0081  0.9818  0.0059  0.9860  0.0057  

BC02 AO 0.9853  0.0032  0.9890  0.0016  0.9907  0.0024  

 RIME 0.9815  0.0048  0.9844  0.0069  0.9859  0.0044  

 DE 0.9814  0.0054  0.9865  0.0032  0.9885  0.0028  

 HHO 0.9682  0.0172  0.9789  0.0105  0.9812  0.0103  

 WOA 0.9786  0.0070  0.9861  0.0034  0.9876  0.0044  

 PSO 0.9836  0.0044  0.9852  0.0044  0.9883  0.0037  

 SCA 0.9416  0.0294  0.9650  0.0147  0.9660  0.0189  

 SSA 0.9825  0.0051  0.9869  0.0051  0.9911  0.0030  

 CS 0.9788  0.0069  0.9835  0.0056  0.9871  0.0048  

BC03 AO 0.9537  0.0345  0.9733  0.0118  0.9770  0.0109  

 RIME 0.9640  0.0120  0.9679  0.0198  0.9707  0.0310  

 DE 0.9601  0.0152  0.9636  0.0157  0.9657  0.0143  

 HHO 0.9427  0.0264  0.9491  0.0333  0.9558  0.0380  



 WOA 0.9595  0.0179  0.9615  0.0256  0.9743  0.0122  

 PSO 0.9621  0.0193  0.9725  0.0121  0.9757  0.0126  

 SCA 0.9006  0.0528  0.9430  0.0452  0.9549  0.0261  

 SSA 0.9535  0.0196  0.9720  0.0133  0.9779  0.0107  

 CS 0.9479  0.0191  0.9617  0.0276  0.9724  0.0186  

BC04 AO 0.9792  0.0033  0.9836  0.0038  0.9865  0.0038  

 RIME 0.9718  0.0099  0.9770  0.0121  0.9817  0.0060  

 DE 0.9717  0.0112  0.9784  0.0064  0.9812  0.0084  

 HHO 0.9611  0.0139  0.9709  0.0114  0.9718  0.0203  

 WOA 0.9684  0.0119  0.9784  0.0089  0.9838  0.0075  

 PSO 0.9783  0.0040  0.9801  0.0067  0.9844  0.0044  

 SCA 0.9300  0.0296  0.9505  0.0209  0.9595  0.0301  

 SSA 0.9703  0.0125  0.9801  0.0067  0.9847  0.0059  

 CS 0.9619  0.0408  0.9702  0.0195  0.9804  0.0074  

BC05 AO 0.9806  0.0035  0.9855  0.0025  0.9882  0.0023  

 RIME 0.9766  0.0080  0.9810  0.0063  0.9822  0.0098  

 DE 0.9754  0.0064  0.9810  0.0047  0.9847  0.0045  

 HHO 0.9652  0.0137  0.9700  0.0162  0.9807  0.0103  

 WOA 0.9740  0.0143  0.9793  0.0083  0.9863  0.0045  

 PSO 0.9776  0.0059  0.9824  0.0040  0.9837  0.0058  

 SCA 0.9485  0.0240  0.9450  0.0353  0.9664  0.0138  

 SSA 0.9757  0.0080  0.9825  0.0069  0.9879  0.0039  

 CS 0.9718  0.0109  0.9808  0.0060  0.9835  0.0055  

BC06 AO 0.9778  0.0076  0.9850  0.0031  0.9869  0.0043  

 RIME 0.9765  0.0069  0.9766  0.0111  0.9815  0.0076  

 DE 0.9737  0.0085  0.9772  0.0074  0.9836  0.0065  

 HHO 0.9614  0.0264  0.9738  0.0127  0.9733  0.0141  

 WOA 0.9705  0.0150  0.9750  0.0200  0.9857  0.0059  

 PSO 0.9784  0.0049  0.9819  0.0057  0.9844  0.0068  

 SCA 0.9369  0.0261  0.9502  0.0242  0.9672  0.0206  

 SSA 0.9731  0.0094  0.9821  0.0057  0.9840  0.0066  

 CS 0.9721  0.0093  0.9781  0.0121  0.9806  0.0107  

BC07 AO 0.9694  0.0350  0.9790  0.0162  0.9804  0.0135  

 RIME 0.9554  0.0620  0.9685  0.0187  0.9803  0.0099  

 DE 0.9646  0.0192  0.9689  0.0217  0.9755  0.0111  

 HHO 0.9390  0.0439  0.9502  0.0369  0.9599  0.0220  

 WOA 0.9606  0.0274  0.9743  0.0244  0.9701  0.0390  

 PSO 0.9665  0.0254  0.9741  0.0162  0.9727  0.0174  

 SCA 0.9030  0.0589  0.9493  0.0292  0.9589  0.0267  

 SSA 0.9667  0.0163  0.9749  0.0077  0.9774  0.0179  

 CS 0.9392  0.0418  0.9585  0.0366  0.9750  0.0099  

BC08 AO 0.9864  0.0033  0.9858  0.0136  0.9911  0.0045  

 RIME 0.9831  0.0087  0.9837  0.0068  0.9855  0.0066  

 DE 0.9804  0.0095  0.9841  0.0050  0.9863  0.0050  

 HHO 0.9682  0.0129  0.9780  0.0085  0.9828  0.0068  

 WOA 0.9769  0.0105  0.9818  0.0152  0.9866  0.0056  

 PSO 0.9794  0.0181  0.9861  0.0063  0.9880  0.0044  

 SCA 0.9388  0.0255  0.9603  0.0248  0.9723  0.0117  

 SSA 0.9784  0.0088  0.9867  0.0049  0.9899  0.0046  



 CS 0.9693  0.0318  0.9840  0.0051  0.9842  0.0091  

BC09 AO 0.9706  0.0056  0.9776  0.0060  0.9814  0.0039  

 RIME 0.9638  0.0173  0.9699  0.0130  0.9793  0.0078  

 DE 0.9643  0.0135  0.9734  0.0078  0.9741  0.0134  

 HHO 0.9281  0.0436  0.9609  0.0188  0.9685  0.0127  

 WOA 0.9591  0.0162  0.9671  0.0145  0.9767  0.0139  

 PSO 0.9678  0.0112  0.9718  0.0115  0.9765  0.0082  

 SCA 0.9196  0.0416  0.9142  0.0493  0.9503  0.0238  

 SSA 0.9641  0.0103  0.9771  0.0067  0.9830  0.0059  

 CS 0.9537  0.0218  0.9650  0.0148  0.9730  0.0146  

BC10 AO 0.9761  0.0037  0.9775  0.0066  0.9818  0.0057  

 RIME 0.9672  0.0164  0.9697  0.0178  0.9752  0.0129  

 DE 0.9648  0.0127  0.9685  0.0107  0.9776  0.0070  

 HHO 0.9387  0.0422  0.9603  0.0225  0.9689  0.0120  

 WOA 0.9618  0.0230  0.9713  0.0147  0.9783  0.0108  

 PSO 0.9663  0.0134  0.9770  0.0065  0.9754  0.0096  

 SCA 0.9048  0.0361  0.9263  0.0519  0.9483  0.0329  

 SSA 0.9690  0.0099  0.9760  0.0084  0.9802  0.0077  

 CS 0.9526  0.0259  0.9609  0.0207  0.9702  0.0142  

BC11 AO 0.9817  0.0089  0.9885  0.0014  0.9894  0.0049  

 RIME 0.9799  0.0100  0.9848  0.0048  0.9840  0.0069  

 DE 0.9803  0.0047  0.9863  0.0023  0.9876  0.0039  

 HHO 0.9608  0.0204  0.9745  0.0137  0.9727  0.0141  

 WOA 0.9708  0.0178  0.9758  0.0105  0.9783  0.0166  

 PSO 0.9800  0.0054  0.9824  0.0079  0.9868  0.0033  

 SCA 0.9442  0.0285  0.9571  0.0223  0.9673  0.0150  

 SSA 0.9795  0.0068  0.9862  0.0035  0.9898  0.0026  

 CS 0.9676  0.0150  0.9793  0.0096  0.9822  0.0059  

BC12 AO 0.9863  0.0024  0.9878  0.0064  0.9925  0.0009  

 RIME 0.9825  0.0057  0.9818  0.0128  0.9860  0.0067  

 DE 0.9823  0.0038  0.9855  0.0044  0.9887  0.0032  

 HHO 0.9695  0.0150  0.9762  0.0125  0.9784  0.0123  

 WOA 0.9805  0.0077  0.9865  0.0053  0.9866  0.0111  

 PSO 0.9833  0.0069  0.9853  0.0047  0.9886  0.0031  

 SCA 0.9496  0.0223  0.9609  0.0210  0.9695  0.0162  

 SSA 0.9822  0.0041  0.9871  0.0036  0.9903  0.0040  

 CS 0.9703  0.0184  0.9748  0.0232  0.9843  0.0091  

BC13 AO 0.9850  0.0022  0.9892  0.0012  0.9911  0.0019  

 RIME 0.9807  0.0093  0.9846  0.0046  0.9876  0.0039  

 DE 0.9813  0.0047  0.9850  0.0036  0.9888  0.0027  

 HHO 0.9721  0.0166  0.9731  0.0133  0.9787  0.0148  

 WOA 0.9797  0.0059  0.9848  0.0067  0.9864  0.0068  

 PSO 0.9831  0.0046  0.9839  0.0046  0.9871  0.0045  

 SCA 0.9340  0.0300  0.9582  0.0271  0.9597  0.0319  

 SSA 0.9779  0.0072  0.9838  0.0076  0.9891  0.0031  

 CS 0.9744  0.0099  0.9755  0.0136  0.9841  0.0061  

BC14 AO 0.9355  0.0627  0.9791  0.0224  0.9803  0.0256  

 RIME 0.9504  0.0455  0.9706  0.0281  0.9808  0.0186  

 DE 0.9573  0.0263  0.9807  0.0060  0.9866  0.0038  



 HHO 0.9084  0.0707  0.9429  0.0454  0.9511  0.0421  

 WOA 0.9217  0.0628  0.9495  0.0504  0.9603  0.0376  

 PSO 0.9539  0.0367  0.9705  0.0212  0.9792  0.0103  

 SCA 0.9163  0.0588  0.9390  0.0298  0.9543  0.0286  

 SSA 0.9714  0.0205  0.9844  0.0045  0.9897  0.0033  

 CS 0.9337  0.0452  0.9617  0.0349  0.9731  0.0186  

BC15 AO 0.9714  0.0085  0.9827  0.0031  0.9830  0.0048  

 RIME 0.9654  0.0296  0.9756  0.0124  0.9776  0.0094  

 DE 0.9674  0.0125  0.9773  0.0078  0.9797  0.0066  

 HHO 0.9462  0.0458  0.9647  0.0177  0.9672  0.0166  

 WOA 0.9614  0.0255  0.9763  0.0088  0.9791  0.0135  

 PSO 0.9744  0.0071  0.9732  0.0361  0.9742  0.0295  

 SCA 0.9472  0.0217  0.9323  0.0507  0.9611  0.0211  

 SSA 0.9701  0.0105  0.9747  0.0121  0.9800  0.0078  

 CS 0.9659  0.0116  0.9714  0.0158  0.9759  0.0142  

Table A.10 PSNR evaluation results at high threshold 

  16 thresholds 20 thresholds  24 thresholds  

Image Method AVG STD AVG STD AVG STD 

BC01 AO 29.4571  0.6052  30.9928  0.4686  31.9056  0.7631  

 RIME 28.9339  1.1033  30.2569  1.5058  31.2484  1.0824  

 DE 28.7195  0.8641  30.4419  0.6816  31.3911  1.0593  

 HHO 27.7542  1.8548  29.3215  1.5960  31.2209  1.4360  

 WOA 28.5004  1.0752  30.6207  1.3392  32.1084  1.1823  

 PSO 29.4130  0.6863  30.0838  1.3570  31.6459  0.9892  

 SCA 25.1334  2.0487  26.3718  2.5041  27.5386  2.1293  

 SSA 28.7346  1.0961  30.5838  1.2316  31.8098  1.0928  

 CS 28.5712  1.2748  29.7931  1.2055  31.2915  1.3162  

BC02 AO 29.2503  0.6375  30.7592  0.5309  31.9010  0.7232  

 RIME 28.6791  0.9793  30.3118  1.1367  31.0113  1.6509  

 DE 28.9611  0.7404  30.5337  0.8732  31.3456  0.9044  

 HHO 27.7976  2.0718  29.4450  1.4446  30.1775  1.9402  

 WOA 28.5400  1.4739  30.5696  1.0786  31.4528  1.4521  

 PSO 29.3817  0.6733  30.4045  1.0355  31.7072  0.8871  

 SCA 24.5997  2.2787  26.6534  2.1247  28.1208  2.0348  

 SSA 28.6195  0.9233  30.3600  1.2809  32.1898  0.9401  

 CS 28.6204  1.0572  30.0081  1.4003  31.2334  1.1403  

BC03 AO 27.2945  2.5622  29.4957  1.6186  30.5724  1.5364  

 RIME 28.0008  1.3136  29.2809  2.0297  30.4343  2.7276  

 DE 27.7982  1.1838  28.6339  1.6821  29.1583  1.7584  

 HHO 26.3049  1.8932  27.2665  2.4223  28.5296  2.9732  

 WOA 27.6376  1.8924  28.6788  2.5365  30.5022  1.8165  

 PSO 27.8870  1.8523  29.6066  1.5785  30.6061  1.6082  

 SCA 23.6612  2.7781  26.8615  2.6717  27.9426  2.0511  

 SSA 26.8794  1.5676  29.4403  1.5304  30.5745  1.6371  

 CS 26.7646  1.6865  28.5236  2.5678  30.3732  2.1139  

BC04 AO 29.5096  0.6363  30.9900  0.8119  31.9711  0.9467  

 RIME 28.5740  1.4411  30.1435  1.8364  31.0492  1.3189  

 DE 28.5369  1.3081  30.0813  1.0752  30.9854  1.5600  

 HHO 27.4712  1.5750  29.0924  1.7819  29.5899  2.3440  



 WOA 28.2350  1.5660  30.0312  1.6367  31.6458  1.5422  

 PSO 29.5624  0.8549  30.5633  1.2314  31.6975  0.9890  

 SCA 25.2915  2.1542  26.5386  2.1035  28.1775  2.6121  

 SSA 28.2180  1.5554  30.3234  1.1871  31.6124  1.4077  

 CS 28.1983  2.6314  29.4594  2.3170  30.9755  1.5657  

BC05 AO 29.2940  0.7634  30.8437  0.7423  32.0174  0.8861  

 RIME 29.2435  0.9450  30.3727  1.2998  31.2895  2.0056  

 DE 29.0331  1.0445  30.3332  0.9678  31.5496  1.1280  

 HHO 28.0983  1.7244  28.9723  2.1882  31.1230  1.9723  

 WOA 29.2033  1.6944  30.2582  1.3941  32.1801  1.1932  

 PSO 29.1582  1.0981  30.6457  1.0219  31.4664  1.1137  

 SCA 26.1946  2.1743  26.3338  3.0031  28.7189  1.5634  

 SSA 28.8402  1.2184  30.3903  1.4495  32.2300  1.2132  

 CS 28.6778  1.1812  30.5928  1.2813  31.6183  1.0818  

BC06 AO 29.2077  1.0742  30.9706  0.8476  31.9454  1.1375  

 RIME 29.3905  1.2924  29.9920  1.8952  31.1907  1.6919  

 DE 28.9677  1.2167  29.7890  1.2945  31.5917  1.2906  

 HHO 27.9380  2.7446  29.6573  1.7335  30.2830  1.9478  

 WOA 28.5122  1.9962  30.1508  2.6347  32.3015  1.5520  

 PSO 29.6694  0.9824  30.8781  1.4131  32.0570  1.5092  

 SCA 25.3560  2.3211  27.0663  2.2900  29.3184  2.3392  

 SSA 28.7809  1.4033  30.6777  1.3221  31.6399  1.4322  

 CS 28.9272  1.2852  30.4000  1.8165  31.4844  1.9140  

BC07 AO 28.7976  2.4246  30.4019  1.8861  31.3015  2.0119  

 RIME 28.1537  3.6168  29.9576  2.1297  31.4751  1.7522  

 DE 28.3464  1.6039  29.5726  2.1137  30.5998  1.7666  

 HHO 26.7298  3.3658  27.8191  2.9227  28.5450  2.6077  

 WOA 28.0383  2.6949  30.3147  2.3994  30.5779  3.3250  

 PSO 28.8227  2.4534  30.1616  2.1246  30.4009  2.5464  

 SCA 24.1038  3.7347  27.3625  2.6871  28.8620  2.6608  

 SSA 28.2210  1.8744  29.5253  1.4084  30.7777  2.3328  

 CS 26.3710  3.1275  28.9419  3.0553  30.3882  2.1427  

BC08 AO 29.6183  0.7552  30.6001  2.0112  32.3599  1.0404  

 RIME 29.5421  1.3037  30.1886  1.2032  31.3983  1.4657  

 DE 29.0370  0.8625  30.1208  0.9958  31.4019  0.7954  

 HHO 27.4113  1.5456  29.2898  1.3713  30.2937  1.5682  

 WOA 28.7887  1.4340  30.3174  2.4032  31.3638  1.7204  

 PSO 29.1742  2.1316  30.6575  1.1808  31.7045  1.2472  

 SCA 24.4862  1.9248  26.5228  2.3505  28.4123  1.3644  

 SSA 28.0315  1.5208  30.3427  1.0081  31.8939  1.0920  

 CS 28.1048  2.6676  29.9547  1.3020  30.9644  2.0995  

BC09 AO 28.7727  0.6773  30.4020  0.9392  31.4265  0.9051  

 RIME 28.8007  1.8266  29.8414  1.7424  31.6641  1.4281  

 DE 28.5891  1.2901  30.0726  1.0461  31.1184  1.2673  

 HHO 26.3650  2.4056  29.3547  1.7951  30.4729  1.8238  

 WOA 28.6690  1.2913  29.7004  1.8505  31.3771  2.1488  

 PSO 29.0186  1.1006  30.2089  1.4933  31.2866  1.4200  

 SCA 25.4280  2.4211  25.4343  2.8323  28.3165  2.1868  

 SSA 28.4026  1.1280  30.3264  1.1894  31.8637  1.3124  



 CS 28.0193  1.8643  29.7328  1.6098  30.9176  1.6933  

BC10 AO 29.3159  0.6825  30.2096  1.1340  31.3653  1.3920  

 RIME 29.0962  1.7346  29.8070  1.7693  31.2317  2.0534  

 DE 28.5956  1.3477  29.4603  1.3043  31.3972  1.1187  

 HHO 26.6203  2.8654  29.3686  2.2765  30.3515  1.6087  

 WOA 28.9577  2.2696  30.2265  1.8214  31.6892  1.9065  

 PSO 28.9271  1.3341  30.7205  1.1651  31.1780  1.2258  

 SCA 24.8622  1.9609  26.6349  3.1441  28.6860  2.1657  

 SSA 28.5831  1.3741  30.1921  1.3285  31.4349  1.5618  

 CS 27.6955  2.2701  29.1647  2.1083  30.4698  1.8582  

BC11 AO 29.2756  0.8698  31.0603  0.5875  32.1955  0.9682  

 RIME 29.3180  1.5760  30.9713  1.1716  31.3558  1.5801  

 DE 29.4597  0.9205  31.1115  0.6414  31.7749  1.0690  

 HHO 27.4550  2.0043  29.6215  1.7656  29.8512  1.8746  

 WOA 28.6784  2.1252  29.7756  2.0376  30.6304  2.9286  

 PSO 29.5627  0.7590  30.5814  1.5415  31.7557  1.0841  

 SCA 25.0557  2.1157  26.7467  2.1711  28.3380  1.6148  

 SSA 28.4349  1.6233  30.2553  1.1925  31.6959  1.2306  

 CS 28.1095  1.7185  29.8581  1.7677  30.5583  1.5161  

BC12 AO 29.9294  0.6876  30.9171  1.2252  32.5864  0.5533  

 RIME 29.6783  0.9151  30.1351  2.1716  31.6271  1.5249  

 DE 29.3787  0.7951  30.6540  1.0073  31.5925  1.1571  

 HHO 28.3649  1.7271  29.3495  1.9521  30.2627  2.1537  

 WOA 29.9630  1.3589  31.6654  1.6202  32.6135  1.8584  

 PSO 30.0772  1.0571  30.8026  1.2245  31.9845  0.9961  

 SCA 25.8980  1.9175  27.0176  2.4918  28.5552  1.8134  

 SSA 28.9472  0.9506  30.3181  1.1750  31.9326  1.0434  

 CS 28.3234  2.1074  29.4627  2.4855  31.3148  1.6042  

BC13 AO 29.7520  0.6255  31.2644  0.5937  32.2851  0.8575  

 RIME 29.4629  1.3844  30.8897  1.2884  31.9296  1.1476  

 DE 29.3947  1.0483  30.5116  1.0166  31.8388  0.8428  

 HHO 28.7322  2.1041  29.2346  1.9210  30.5704  2.2201  

 WOA 29.8751  1.2401  31.4306  1.1211  32.2749  1.8709  

 PSO 30.0252  0.9081  30.1923  1.2918  31.6055  1.4335  

 SCA 24.9359  2.5399  27.1209  2.4514  27.6444  2.4413  

 SSA 28.3912  1.1366  29.9920  1.6282  31.6453  1.0971  

 CS 28.8081  1.4432  29.3783  2.1532  31.2805  1.6669  

BC14 AO 26.7695  2.3417  29.5795  1.9300  30.4507  2.1791  

 RIME 27.8545  2.0275  29.6409  1.7091  30.7655  1.4572  

 DE 28.0318  1.0893  30.0654  0.6269  31.0392  1.0017  

 HHO 25.2302  3.0652  27.2964  2.3138  27.7162  2.6570  

 WOA 26.0562  2.8937  28.1716  2.5395  29.0337  2.7886  

 PSO 27.9216  1.6046  29.1346  1.6083  30.5744  1.3470  

 SCA 23.9785  2.8666  25.5307  2.0752  27.2522  2.2546  

 SSA 27.8656  1.5721  29.7405  1.4017  31.4189  1.2437  

 CS 26.4505  2.2353  28.4457  2.0461  29.3873  1.6756  

BC15 AO 28.7846  0.7096  30.8731  0.7509  31.6406  1.1571  

 RIME 28.4731  1.7807  30.1402  1.6780  31.0823  1.4009  

 DE 28.4478  1.1373  30.3615  0.9416  31.1229  0.9557  



 HHO 27.1343  2.7354  29.1122  2.1326  29.8001  2.1616  

 WOA 28.2330  1.9819  30.5605  1.6208  31.5565  1.6657  

 PSO 29.4305  0.9362  30.3887  2.5138  31.5929  2.4009  

 SCA 26.6371  1.7458  26.1983  2.9899  28.7027  2.1582  

 SSA 28.6559  1.1632  30.2134  1.4980  31.2212  1.4671  

 CS 28.3490  1.4549  29.7916  1.7793  31.0736  1.8625  

Table A.11 SSIM evaluation results at high threshold 

  16 thresholds 20 thresholds  24 thresholds  

Image Method AVG STD AVG STD AVG STD 

BC01 AO 0.9685  0.0043  0.9765  0.0032  0.9795  0.0041  

 RIME 0.9629  0.0118  0.9690  0.0184  0.9751  0.0074  

 DE 0.9606  0.0116  0.9716  0.0071  0.9744  0.0086  

 HHO 0.9477  0.0287  0.9609  0.0179  0.9746  0.0094  

 WOA 0.9591  0.0125  0.9728  0.0093  0.9794  0.0070  

 PSO 0.9665  0.0069  0.9663  0.0143  0.9761  0.0075  

 SCA 0.9133  0.0455  0.9228  0.0469  0.9385  0.0329  

 SSA 0.9609  0.0116  0.9721  0.0126  0.9778  0.0074  

 CS 0.9577  0.0170  0.9648  0.0133  0.9739  0.0109  

BC02 AO 0.9679  0.0054  0.9756  0.0040  0.9800  0.0044  

 RIME 0.9613  0.0120  0.9729  0.0076  0.9718  0.0151  

 DE 0.9649  0.0071  0.9731  0.0090  0.9760  0.0069  

 HHO 0.9520  0.0278  0.9659  0.0147  0.9669  0.0198  

 WOA 0.9599  0.0174  0.9737  0.0084  0.9765  0.0102  

 PSO 0.9686  0.0068  0.9717  0.0082  0.9778  0.0059  

 SCA 0.9060  0.0409  0.9313  0.0352  0.9509  0.0250  

 SSA 0.9624  0.0095  0.9718  0.0105  0.9811  0.0055  

 CS 0.9607  0.0127  0.9686  0.0131  0.9755  0.0084  

BC03 AO 0.9286  0.0394  0.9555  0.0158  0.9622  0.0149  

 RIME 0.9438  0.0155  0.9522  0.0246  0.9551  0.0358  

 DE 0.9372  0.0169  0.9441  0.0189  0.9470  0.0177  

 HHO 0.9228  0.0309  0.9245  0.0409  0.9364  0.0465  

 WOA 0.9394  0.0210  0.9457  0.0295  0.9631  0.0121  

 PSO 0.9397  0.0236  0.9545  0.0172  0.9613  0.0133  

 SCA 0.8703  0.0582  0.9189  0.0508  0.9307  0.0339  

 SSA 0.9248  0.0233  0.9521  0.0177  0.9623  0.0143  

 CS 0.9194  0.0244  0.9380  0.0399  0.9567  0.0238  

BC04 AO 0.9562  0.0068  0.9660  0.0067  0.9705  0.0083  

 RIME 0.9484  0.0187  0.9591  0.0243  0.9640  0.0135  

 DE 0.9445  0.0194  0.9565  0.0133  0.9602  0.0189  

 HHO 0.9367  0.0200  0.9511  0.0217  0.9513  0.0337  

 WOA 0.9457  0.0240  0.9588  0.0171  0.9708  0.0118  

 PSO 0.9573  0.0094  0.9601  0.0138  0.9694  0.0094  

 SCA 0.9003  0.0398  0.9161  0.0302  0.9308  0.0544  

 SSA 0.9415  0.0225  0.9592  0.0123  0.9669  0.0123  

 CS 0.9361  0.0589  0.9487  0.0314  0.9628  0.0148  

BC05 AO 0.9487  0.0097  0.9611  0.0080  0.9676  0.0081  

 RIME 0.9492  0.0143  0.9572  0.0145  0.9589  0.0236  

 DE 0.9450  0.0167  0.9553  0.0128  0.9627  0.0126  

 HHO 0.9320  0.0279  0.9379  0.0346  0.9610  0.0230  



 WOA 0.9480  0.0233  0.9560  0.0176  0.9694  0.0111  

 PSO 0.9444  0.0168  0.9582  0.0100  0.9624  0.0115  

 SCA 0.9076  0.0424  0.9006  0.0640  0.9372  0.0237  

 SSA 0.9429  0.0165  0.9549  0.0177  0.9687  0.0107  

 CS 0.9404  0.0188  0.9568  0.0174  0.9632  0.0103  

BC06 AO 0.9407  0.0161  0.9576  0.0087  0.9637  0.0098  

 RIME 0.9449  0.0183  0.9453  0.0249  0.9554  0.0206  

 DE 0.9380  0.0202  0.9431  0.0186  0.9589  0.0159  

 HHO 0.9278  0.0497  0.9455  0.0254  0.9465  0.0261  

 WOA 0.9379  0.0302  0.9467  0.0414  0.9673  0.0135  

 PSO 0.9464  0.0140  0.9562  0.0159  0.9629  0.0178  

 SCA 0.8873  0.0481  0.9073  0.0383  0.9313  0.0397  

 SSA 0.9332  0.0224  0.9539  0.0152  0.9593  0.0154  

 CS 0.9382  0.0194  0.9498  0.0247  0.9571  0.0245  

BC07 AO 0.9317  0.0536  0.9509  0.0254  0.9599  0.0157  

 RIME 0.9207  0.0799  0.9477  0.0236  0.9558  0.0243  

 DE 0.9298  0.0227  0.9366  0.0372  0.9502  0.0186  

 HHO 0.9048  0.0589  0.9183  0.0530  0.9216  0.0383  

 WOA 0.9218  0.0485  0.9481  0.0365  0.9438  0.0595  

 PSO 0.9316  0.0378  0.9479  0.0270  0.9433  0.0312  

 SCA 0.8477  0.0835  0.9103  0.0454  0.9258  0.0471  

 SSA 0.9245  0.0353  0.9409  0.0195  0.9479  0.0368  

 CS 0.8919  0.0627  0.9309  0.0448  0.9439  0.0271  

BC08 AO 0.9757  0.0044  0.9769  0.0189  0.9852  0.0041  

 RIME 0.9733  0.0115  0.9747  0.0076  0.9797  0.0091  

 DE 0.9696  0.0071  0.9741  0.0078  0.9805  0.0047  

 HHO 0.9546  0.0180  0.9696  0.0092  0.9735  0.0115  

 WOA 0.9686  0.0115  0.9732  0.0230  0.9790  0.0114  

 PSO 0.9667  0.0368  0.9766  0.0103  0.9803  0.0084  

 SCA 0.9155  0.0386  0.9390  0.0387  0.9608  0.0127  

 SSA 0.9622  0.0155  0.9768  0.0060  0.9825  0.0055  

 CS 0.9529  0.0542  0.9720  0.0095  0.9742  0.0186  

BC09 AO 0.9491  0.0080  0.9617  0.0093  0.9679  0.0073  

 RIME 0.9425  0.0281  0.9517  0.0203  0.9665  0.0127  

 DE 0.9408  0.0221  0.9554  0.0128  0.9615  0.0140  

 HHO 0.8994  0.0528  0.9458  0.0238  0.9534  0.0202  

 WOA 0.9427  0.0187  0.9500  0.0242  0.9616  0.0256  

 PSO 0.9465  0.0162  0.9550  0.0170  0.9627  0.0166  

 SCA 0.8839  0.0546  0.8744  0.0677  0.9278  0.0326  

 SSA 0.9405  0.0153  0.9590  0.0122  0.9691  0.0135  

 CS 0.9303  0.0333  0.9498  0.0200  0.9579  0.0206  

BC10 AO 0.9519  0.0075  0.9577  0.0123  0.9656  0.0119  

 RIME 0.9454  0.0225  0.9494  0.0277  0.9605  0.0200  

 DE 0.9389  0.0206  0.9446  0.0185  0.9620  0.0134  

 HHO 0.9014  0.0573  0.9419  0.0311  0.9516  0.0164  

 WOA 0.9382  0.0356  0.9535  0.0215  0.9648  0.0186  

 PSO 0.9422  0.0181  0.9590  0.0128  0.9599  0.0120  

 SCA 0.8700  0.0468  0.8913  0.0696  0.9305  0.0404  

 SSA 0.9404  0.0197  0.9554  0.0148  0.9628  0.0139  



 CS 0.9224  0.0417  0.9378  0.0283  0.9520  0.0226  

BC11 AO 0.9733  0.0046  0.9810  0.0028  0.9844  0.0034  

 RIME 0.9687  0.0150  0.9784  0.0066  0.9774  0.0133  

 DE 0.9709  0.0080  0.9794  0.0046  0.9801  0.0081  

 HHO 0.9500  0.0242  0.9691  0.0134  0.9682  0.0157  

 WOA 0.9626  0.0261  0.9689  0.0162  0.9689  0.0340  

 PSO 0.9725  0.0056  0.9744  0.0147  0.9808  0.0062  

 SCA 0.9160  0.0431  0.9391  0.0324  0.9555  0.0187  

 SSA 0.9618  0.0189  0.9748  0.0077  0.9812  0.0061  

 CS 0.9590  0.0202  0.9703  0.0147  0.9730  0.0110  

BC12 AO 0.9703  0.0055  0.9743  0.0085  0.9820  0.0025  

 RIME 0.9676  0.0085  0.9660  0.0173  0.9753  0.0112  

 DE 0.9640  0.0078  0.9709  0.0082  0.9743  0.0079  

 HHO 0.9573  0.0204  0.9612  0.0179  0.9637  0.0206  

 WOA 0.9700  0.0099  0.9769  0.0110  0.9806  0.0107  

 PSO 0.9697  0.0080  0.9716  0.0114  0.9774  0.0076  

 SCA 0.9249  0.0303  0.9338  0.0380  0.9489  0.0248  

 SSA 0.9615  0.0092  0.9682  0.0093  0.9771  0.0071  

 CS 0.9521  0.0311  0.9572  0.0355  0.9729  0.0104  

BC13 AO 0.9714  0.0041  0.9788  0.0035  0.9820  0.0045  

 RIME 0.9671  0.0137  0.9739  0.0101  0.9788  0.0069  

 DE 0.9660  0.0116  0.9718  0.0071  0.9780  0.0057  

 HHO 0.9558  0.0313  0.9600  0.0187  0.9676  0.0221  

 WOA 0.9697  0.0108  0.9780  0.0063  0.9792  0.0111  

 PSO 0.9718  0.0069  0.9681  0.0124  0.9759  0.0119  

 SCA 0.9058  0.0525  0.9354  0.0441  0.9385  0.0493  

 SSA 0.9581  0.0117  0.9673  0.0183  0.9778  0.0073  

 CS 0.9599  0.0165  0.9598  0.0251  0.9734  0.0133  

BC14 AO 0.9368  0.0513  0.9697  0.0260  0.9712  0.0353  

 RIME 0.9535  0.0318  0.9694  0.0149  0.9741  0.0117  

 DE 0.9608  0.0111  0.9736  0.0053  0.9764  0.0077  

 HHO 0.9059  0.0626  0.9432  0.0290  0.9435  0.0348  

 WOA 0.9235  0.0520  0.9514  0.0356  0.9578  0.0368  

 PSO 0.9573  0.0207  0.9660  0.0165  0.9741  0.0104  

 SCA 0.8963  0.0818  0.9255  0.0394  0.9421  0.0315  

 SSA 0.9576  0.0209  0.9712  0.0113  0.9790  0.0085  

 CS 0.9374  0.0387  0.9571  0.0239  0.9640  0.0159  

BC15 AO 0.9497  0.0091  0.9672  0.0061  0.9687  0.0088  

 RIME 0.9430  0.0361  0.9579  0.0176  0.9657  0.0121  

 DE 0.9473  0.0148  0.9621  0.0112  0.9657  0.0104  

 HHO 0.9230  0.0564  0.9460  0.0290  0.9529  0.0239  

 WOA 0.9432  0.0312  0.9627  0.0156  0.9645  0.0167  

 PSO 0.9551  0.0100  0.9557  0.0482  0.9634  0.0355  

 SCA 0.9291  0.0226  0.9012  0.0678  0.9406  0.0244  

 SSA 0.9497  0.0137  0.9616  0.0122  0.9659  0.0122  

 CS 0.9467  0.0162  0.9545  0.0218  0.9625  0.0180  
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